Introduction: Inducing vascularization in three-dimensional skin constructs continues to be difficult. In this study, two variations of human full-thickness skin constructs were examined. Type KCFB consists of keratinocytes (epidermal equivalent) and fibroblasts that were embedded in a collagen matrix (dermal equivalent). Type KCFB-EC consists of keratinocytes as well as fibroblasts and vascular endothelial cells. The epidermal equivalent of KCFB-EC constructs underwent cellular alterations in their differentiation possibly induced by the presence of endothelial cells. The objective of the study was to assess the effect of endothelial cells, i.e., endothelialization of the dermal equivalent on the differentiation of keratinocytes by comparing the morphology and ultrastructure of the two types of skin constructs, as well as to excised normal human skin.

Hypothesis: The differentiation of keratinocytes is influenced by the presence of endothelial cells.

Methods, Patients, Material: KCFB constructs (keratinocytes, fibroblasts) and KCFB-EC skin constructs(kera-tinocytes, fibroblasts, endothelial cells) were prepared according to Küchler et al. [25]. After two weeks, the skin constructs were processed for analysis by light microscopy (LM) and electron microscopy (TEM), followed by quantitative, semi-quantitative as well as qualitative assessment. For comparison, analysis by LM and TEM of excised normal human skin was also performed.

Results: Both KCFB and KCFB-EC skin constructs and the human skin had all strata of stratified soft-cornified epidermis present. The comparison of the respective layers of the skin constructs brought the following characteristics to light: The KCFB-EC constructs had significantly more mitotic cells in the stratum spinosum, more cell layers in the stratum granulosum and more keratohyalin granules compared to KCFB skin constructs. Additionally, the epidermal architecture was unorganized in the endothelialized constructs and features of excessive epidermal differentiation appeared in KCFB-EC skin constructs.

Conclusion: The endothelialization of the dermal equivalent caused changes in the differentiation of the epidermis of KCFB-EC skin constructs that may be interpreted as an unbalanced, i.e., uncontrolled or enhanced maturation process.

Download full-text PDF

Source
http://dx.doi.org/10.3233/CH-151988DOI Listing

Publication Analysis

Top Keywords

skin constructs
36
endothelial cells
16
kcfb-ec skin
16
skin
13
constructs
13
dermal equivalent
12
epidermal differentiation
8
three-dimensional skin
8
consists keratinocytes
8
epidermal equivalent
8

Similar Publications

Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.

View Article and Find Full Text PDF

Construction and bacteriostatic effect analyses of a recombinant thermostable Newcastle disease virus expressing cecropin AD.

Vet Microbiol

January 2025

Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China. Electronic address:

Cecropin AD (CAD), a hybrid antimicrobial peptide composed of the first 11 residues of cecropin A and last 26 residues of cecropin D, is a promising antibiotic candidate. Therefore, an efficient and convenient method for producing CAD is necessary for commercial applications. The Newcastle disease virus (NDV) has been widely used as a platform for gene delivery and exogenous protein expression.

View Article and Find Full Text PDF

Traumatic hemorrhage and infection are major causes of mortality in wounds caused by battlefield injuries, hospital procedures, and traffic accidents. Developing a multifunctional nano-drug capable of simultaneously controlling bleeding, preventing infection, and promoting wound healing is critical. This study aimed to design and evaluate a nanoparticle-based solution to address these challenges effectively.

View Article and Find Full Text PDF

Fifteen compounds (-) constructed on a hybrid structure combining a β-phenyl-α,β-unsaturated carbonyl template and a 2-aminothiazol-4(5)-one scaffold were designed and synthesized as potential novel anti-tyrosinase substances. Two compounds ( and ) showed more potent inhibition against mushroom tyrosinase than kojic acid, and the inhibitory activity of (IC value: 1.60 μM) was 11 times stronger than that of kojic acid.

View Article and Find Full Text PDF

Bee venom (BV) and its main compound melittin (MLT) have antioxidant, anti-inflammatory, and anti-aging activities; however, very little research has been conducted on their effects on skin aging. In this study, a mouse skin aging model induced by D-galactose was constructed via subcutaneous injection into the scruff of the neck, and different doses of BV and MLT were used as interventions. The anti-aging effects and mechanisms of BV and MLT were explored by detecting the skin morphology and structure, and anti-aging-related factors and performing non-targeted metabolomics of mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!