Binding Mode Selection Determines the Action of Ecstasy Homologs at Monoamine Transporters.

Mol Pharmacol

Institute of Pharmacology, Center for Physiology and Pharmacology (W.S., T.Sto., P.S.H., M.H., T.Ste., H.H.S.) and Center for Addiction Research and Science (H.H.S.), Medical University of Vienna, Vienna, Austria; Designer Drug Research Unit (J.S.P., M.H.B.) and Medicinal Chemistry Section (J.J.C., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria (A.S., G.F.E.); and Department of Pharmacology, Yale University, New Haven, Connecticut (Y.-W.Z., G.R.)

Published: January 2016

Determining the structural elements that define substrates and inhibitors at the monoamine transporters is critical to elucidating the mechanisms underlying these disparate functions. In this study, we addressed this question directly by generating a series of N-substituted 3,4-methylenedioxyamphetamine analogs that differ only in the number of methyl substituents on the terminal amine group. Starting with 3,4-methylenedioxy-N-methylamphetamine, 3,4-methylenedioxy-N,N-dimethylamphetamine (MDDMA) and 3,4-methylenedioxy-N,N,N-trimethylamphetamine (MDTMA) were prepared. We evaluated the functional activities of the compounds at all three monoamine transporters in native brain tissue and cells expressing the transporters. In addition, we used ligand docking to generate models of the respective protein-ligand complexes, which allowed us to relate the experimental findings to available structural information. Our results suggest that the 3,4-methylenedioxyamphetamine analogs bind at the monoamine transporter orthosteric binding site by adopting one of two mutually exclusive binding modes. 3,4-methylenedioxyamphetamine and 3,4-methylenedioxy-N-methylamphetamine adopt a high-affinity binding mode consistent with a transportable substrate, whereas MDDMA and MDTMA adopt a low-affinity binding mode consistent with an inhibitor, in which the ligand orientation is inverted. Importantly, MDDMA can alternate between both binding modes, whereas MDTMA exclusively binds to the low-affinity mode. Our experimental results are consistent with the idea that the initial orientation of bound ligands is critical for subsequent interactions that lead to transporter conformational changes and substrate translocation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4702095PMC
http://dx.doi.org/10.1124/mol.115.101394DOI Listing

Publication Analysis

Top Keywords

binding mode
12
monoamine transporters
12
34-methylenedioxyamphetamine analogs
8
binding modes
8
mode consistent
8
binding
6
mode selection
4
selection determines
4
determines action
4
action ecstasy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!