Background: Pseudomonas aeruginosa is an environmentally ubiquitous Gram-negative bacterium and important opportunistic human pathogen, causing severe chronic respiratory infections in patients with underlying conditions such as cystic fibrosis (CF) or bronchiectasis. In order to identify mechanisms responsible for adaptation during bronchiectasis infections, a bronchiectasis isolate, PAHM4, was phenotypically and genotypically characterized.

Results: This strain displays phenotypes that have been associated with chronic respiratory infections in CF including alginate over-production, rough lipopolysaccharide, quorum-sensing deficiency, loss of motility, decreased protease secretion, and hypermutation. Hypermutation is a key adaptation of this bacterium during the course of chronic respiratory infections and analysis indicates that PAHM4 encodes a mutated mutS gene responsible for a ~1,000-fold increase in mutation rate compared to wild-type laboratory strain P. aeruginosa PAO1. Antibiotic resistance profiles and sequence data indicate that this strain acquired numerous mutations associated with increased resistance levels to β-lactams, aminoglycosides, and fluoroquinolones when compared to PAO1. Sequencing of PAHM4 revealed a 6.38 Mbp genome, 5.9 % of which were unrecognized in previously reported P. aeruginosa genome sequences. Transcriptome analysis suggests a general down-regulation of virulence factors, while metabolism of amino acids and lipids is up-regulated when compared to PAO1 and metabolic modeling identified further potential differences between PAO1 and PAHM4.

Conclusions: This work provides insights into the potential differential adaptation of this bacterium to the lung of patients with bronchiectasis compared to other clinical settings such as cystic fibrosis, findings that should aid the development of disease-appropriate treatment strategies for P. aeruginosa infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4628258PMC
http://dx.doi.org/10.1186/s12864-015-2069-0DOI Listing

Publication Analysis

Top Keywords

cystic fibrosis
12
chronic respiratory
12
respiratory infections
12
pseudomonas aeruginosa
8
bronchiectasis isolate
8
adaptation bacterium
8
compared pao1
8
aeruginosa
5
bronchiectasis
5
infections
5

Similar Publications

Background: Due to its increasing prevalence and suboptimal treatment, non-tuberculous mycobacterial (NTM) infection is an emerging problem in patients with cystic fibrosis (CF). Detailed description of regional NTM prevalence and distribution, and identification of predictors of NTM acquisition in CF are essential to optimise treatment and surveillance guidelines.

Methods: A retrospective, multi-center analysis was conducted between the years 2020 and 2022 on data from 232 adult patients registered in the Hungarian CF Registry in 2022.

View Article and Find Full Text PDF

Introduction: Living with a chronic disease impacts many aspects of life, including the ability to participate in activities that enable interactions with others in society, that is, social participation (SP). Despite efforts to monitor the quality of care and life of chronically ill people in Belgium, no disease-specific patient-reported measures (PRMs) have been used. These tools are essential to understand SP and to develop evidence-based recommendations to support its improvement.

View Article and Find Full Text PDF

Introduction: Cystic fibrosis (CF) is an autosomal recessive genetic disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, primarily affecting the respiratory and digestive systems. Respiratory rehabilitation techniques play a crucial role in managing pulmonary symptoms and maintaining lung function in CF patients. Although various techniques have been developed and applied, there is currently no globally recognised optimal respiratory rehabilitation regimen.

View Article and Find Full Text PDF

Approaches to mitigate the severity of infections and of immune responses are still needed for the treatment of cystic fibrosis (CF) even with the success of highly effective modulator therapies. Previous studies identified reduced levels of melatonin in a CF mouse model related to circadian rhythm dysregulation. Melatonin is known to have immunomodulatory properties and it was hypothesized that treatment with melatonin would improve responses to bacterial infection in CF mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!