Circadian rhythm provides organisms with an internal system to maintain temporal order in a dynamic environment. This is typified by a 24-h cycle for a number of physiological processes, including immunity. The present study characterized the humoral and mucosal defense molecules and their dynamics during a light-dark (LD) cycle in juvenile permit, Trachinotus falcatus. All studied defense molecules were constitutively identified in serum and skin mucus. Serum generally exhibited higher levels of these defenses than skin mucus, with the exception of anti-protease (ANTIPRO). The difference in ANTIPRO, lysozyme (LYZ), esterase (ESA) and catalase (CAT) levels between serum and skin mucus was not affected by the phase of the daily cycle. However, a clear phase-dependent difference was observed in protease (PRO), globulin (GLOB), myeloperoxidase (MPO), alkaline phosphatase (ALP) and glutathione peroxidase (GPX) levels. Activities of ALP and GPX displayed significant daily rhythmicity in both serum and skin mucus. Circadian profile of ALP was identical in both biofluids, but an antiphasic feature was exhibited by GPX. GLOB and MPO levels also exhibited significant daily oscillation but only in serum with acrophases registered at ZT 14.5 and 6.15, respectively. Mucus PRO and serum ANTIPRO demonstrated significant temporal variations during a daily cycle albeit not rhythmic. Cluster analysis of the defense molecules in serum and skin mucus revealed two different daily profiles suggesting a possibility of distinct circadian control between humoral and mucosal immunity. These observations indicate that LD cycle had a remarkable impact in the defense molecules characterizing the humoral and mucosal immunity in permit. Daily rhythmic patterns of these defense molecules contribute to our understanding of the barely explored interplay of immunity and circadian rhythm in teleost fish. Lastly, the results could be useful in developing aquaculture practices aiming at modifying the immune functions of permit for improved health.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2015.10.037DOI Listing

Publication Analysis

Top Keywords

defense molecules
24
skin mucus
20
humoral mucosal
16
serum skin
16
mucosal defense
8
light-dark cycle
8
permit trachinotus
8
trachinotus falcatus
8
circadian rhythm
8
daily cycle
8

Similar Publications

The lung tumor microenvironment is composed of various cell types, including cancer cells, stromal and immune cells, as well as extracellular matrix (ECM). These cells and surrounding ECM create a stiff, hypoxic, acidic, and immunosuppressive microenvironment that can augment the resistance of lung tumors to different forms of cell death and facilitate invasion and metastasis. This environment can induce chemo/radiotherapy resistance by inducing anti-apoptosis mediators such as phosphoinositide 3-kinase (PI3K)/Akt, signal transducer and activator of transcription 3 (STAT3), and nuclear factor of κB (NF-κB), leading to the exhaustion of antitumor immunity and further resistance to chemo/radiotherapy.

View Article and Find Full Text PDF

Control of HS synthesis by the monomer-oligomer transition of OsCBSX3 for modulating rice growth-immunity balance.

Mol Plant

January 2025

State Key Laboratory of Wheat Improvement, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China. Electronic address:

Hydrogen sulfide (H2S) is recognized as an important gaseous signaling molecule, similar to nitric oxide and carbon monoxide. However, the synthesis mechanism of H2S and its role in enhancing rice resistance to Xanthomonas oryzae pv. oryzicola (Xoc) and Xanthomonas oryzae pv.

View Article and Find Full Text PDF

Interferon types-I/II (IFN-αβ/γ) secretions are well-established antiviral host defenses. The human immunodeficiency virus (HIV) particles are known to prevail following targeted cellular interferon secretion. CD4 T-lymphocytes are the primary receptor targets for HIV entry, but the virus has been observed to hide (be latent) successfully in these cells through an alternate entry route via interactions with LFA1.

View Article and Find Full Text PDF

Purpose Of Review: The purpose of this review is to summarize the current understanding of cell-autonomous innate immune pathways that contribute to bone homeostasis and disease.

Recent Findings: Germ-line encoded pattern recognition receptors (PRRs) are the first line of defense against danger and infections. In the bone microenvironment, PRRs and downstream signaling pathways, that mount immune defense, interface intimately with the core cellular processes in bone cells to alter bone formation and resorption.

View Article and Find Full Text PDF

To clarify the effect of heating rate on the thermal decomposition process of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), this study employs molecular dynamic simulations to investigate the thermal decomposition of TATB at heating rates of 20, 40, 60, and 80 K/ps. The initial temperature is uniformly set to 300 K, while the final temperature is set to 3000 K. Results indicate that within the temperature range of 300-3000 K, the thermal decomposition rate of TATB decreases with increasing heating rate, whereas the initial decomposition temperature of TATB increases, consistent with the experimental pattern.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!