Toxoplasma gondii (T. gondii) is an obligate, intracellular, protozoan parasite that infects large variety of warm-blooded animals including humans, livestock, and marine mammals, and causes the disease toxoplasmosis. Although T. gondii infection rates differ significantly from country to country, it still has a high morbidity and mortality. In these circumstances, developing an effective vaccine against T. gondii is urgently needed for preventing and treating toxoplasmosis. The aim of this study was to construct a multi-epitopes DNA vaccine and evaluate the immune protective efficacy against acute toxoplasmosis in mice. Therefore, twelve T- and B-cell epitopes from SAG1, GRA2, GRA7 and ROP16 of T. gondii were predicted by bioinformatics analysis, and then a multi-epitopes DNA vaccine was constructed. Mice immunized with the multi-epitopes DNA vaccine gained higher levels of IgG titers and IgG2a subclass titers, significant production of gamma interferon (IFN-γ), percentage of T lymphocyte subsets, and longer survival times against the acute infection of T. gondii compared with those of mice administered with empty plasmid and those in control groups. Furthermore, a genetic adjuvant pEGFP-RANTES (pRANTES) could enhance the efficacy of the multi-epitopes DNA vaccine associating with humoral and cellular (Th1, CD8(+) T cell) immune responses. Above all, the DNA vaccine and the genetic adjuvant revealed in this study might be new candidates for further vaccine development against T. gondii infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2015.10.077DOI Listing

Publication Analysis

Top Keywords

dna vaccine
24
multi-epitopes dna
16
toxoplasma gondii
8
vaccine
8
b-cell epitopes
8
epitopes sag1
8
sag1 gra2
8
gra2 gra7
8
gra7 rop16
8
acute toxoplasmosis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!