Scanning probe microscopy has been widely used to obtain topographical information and to quantify nanostructural properties of different materials. Qualitative and quantitative imaging is of particular interest to study material-material interactions and map surface properties on a nanoscale (i.e. stiffness and viscoelastic properties). These data are essential for the development of new biomedical materials. Currently, there are limited options to map viscoelastic properties of materials at nanoscale and at high resolutions. Lorentz contact resonance (LCR) is an emerging technique, which allows mapping viscoelasticity of samples with stiffness ranging from a few hundred Pa up to several GPa. Here we demonstrate the applicability of LCR to probe and map the viscoelasticity and stiffness of 'soft' (biological sample: cell treated with nanodiamond), 'medium hard' (pharmaceutical sample: pMDI canister) and 'hard' (human teeth enamel) specimens. The results allowed the identification of nanodiamond on the cells and the qualitative assessment of its distribution based on its nanomechanical properties. It also enabled mapping of the mechanical properties of the cell to demonstrate variability of these characteristics in a single cell. Qualitative imaging of an enamel sample demonstrated variations of stiffness across the specimen and precise identification of enamel prisms (higher stiffness) and enamel interrods (lower stiffness). Similarly, mapping of the pMDI canister wall showed that drug particles were adsorbed to the wall. These particles showed differences in stiffness at nanoscale, which suggested variations in surface composition-multiphasic material. LCR technique emerges as a valuable tool for probing viscoelasticity of samples of varying stiffness's.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10856-015-5605-1 | DOI Listing |
Am J Sports Med
January 2025
Duke University School of Medicine, Durham, North Carolina, USA.
Background: Superior labral tears are common shoulder injuries among athletes, and for athletes undergoing surgical intervention, one of the main priorities is to return to preinjury levels of activity in a timely manner. However, the literature surrounding return to play after superior labral repair presents inconsistent results, with limited studies evaluating the timing of return to play.
Purpose: To systematically review the rate and timing of return to play in athletes after arthroscopic superior labral repair.
J Biol Chem
December 2024
Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA; Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA.
Lipopolysaccharide (LPS) is the primary pathogenic factor in Gram-negative sepsis. While the presence of LPS in the bloodstream during infection is associated with disseminated intravascular coagulation, the mechanistic link between LPS and blood coagulation activation remains ill-defined. The contact pathway of coagulation-a series of biochemical reactions that initiates blood clotting when plasma factors XII (FXII) and XI (FXI), prekallikrein (PK), and high molecular weight kininogen interact with anionic surfaces-has been shown to be activated in Gram-negative septic patients.
View Article and Find Full Text PDFMagn Reson Med
January 2025
Istituto Nazionale di Ricerca Metrologica (INRIM), Torino, Italy.
Purpose: To quantify the extent of gradient-induced vibrations, and the magnitude of motion-induced displacement forces ("Lenz effect"), in conductive nonmagnetic orthopedic prostheses.
Methods: The investigation is carried out through numerical simulations, for a 3 T scanner. For gradient-induced torques and vibrations, a knee and a shoulder implant are considered, at dB/dt equal to 42 T/s (rms).
Magn Reson Med
November 2024
Brain Imaging Center, Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA.
Purpose: Driven by the Lorentz force, acoustic noise may arguably be the next physiological challenge associated with ultra-high field MRI scanners and powerful gradient coils. This work consisted of isolating and mitigating the main sound pathway in the NexGen 7 T scanner equipped with the investigational Impulse head gradient coil.
Methods: Sound pressure level (SPL) measurements were performed with and without the RF coil to assess its acoustic impact.
Sensors (Basel)
February 2024
Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.
Inertial sensors are the key payloads in space gravitational wave detection missions, and they need to ensure that the test mass (TM), which serves as the inertial reference, freely floats in the spacecraft without contact, so that the TM is not disturbed by the satellite platform and the cosmic environment. Space gravitational wave detection missions require that the residual acceleration of the TM should be less than 3×10-15ms-2Hz-1/2. However, the TM with charges will interact with surrounding conductors and magnetic fields, introducing acceleration noise such as electrostatic force and Lorentz force.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!