Modulation of growth factor signaling pathways in the brain represents a new experimental approach to treating neuropsychiatric disorders such as depression, anxiety, and addiction. Neurotrophins and growth factors exert synaptic, neuronal, and circuit level effects on a wide temporal range, which suggests a possibility of rapid and lasting therapeutic effects. Consequently, identification of small molecules that can either enhance the release of growth factors or potentiate their respective pathways will provide a drug-like alternative to direct neurotrophin administration or viral gene delivery and thus represents an important frontier in chemical biology and drug design. Glial cell line-derived neurotrophic factor (GDNF), in particular, has been implicated in marked reduction of alcohol consumption in rodent addiction models, and the natural product ibogaine, a substance used traditionally in ritualistic ceremonies, has been suggested to increase the synthesis and release of GDNF in the dopaminergic system in rats. In this report, we describe a novel iboga analog, XL-008, created by unraveling the medium size ring of the ibogamine skeleton, and its ability to induce release of GDNF in C6 glioma cells. Additionally, XL-008 potentiates the release of GDNF induced by fibroblast growth factor 2 (FGF2), another neurotrophin implicated in major depressive disorder, increasing potency more than 2-fold (from 7.85 ± 2.59 ng/mL to 3.31 ± 0.98 ng/mL) and efficacy more than 3-fold. The GDNF release by both XL-008 and the FGF2/XL-008 mixture was found to be mediated through the MEK and PI3K signaling pathways but not through PLCγ in C6 glioma cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acschembio.5b00678 | DOI Listing |
Adv Sci (Weinh)
December 2024
Department of Orthopaedic Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, 0608638, Japan.
The neurotrophic factor, Glial cell line derived neurotrophi factor (GDNF), exerts a variety of biological effects through binding to its receptors, GDNF family receptor alpha-1 (GFRα1), and RET. However, the existence of cells expressing GFRα1 but not RET raises the possibility that GFRα1 can function independently from RET. Here, it is shown that GFRα1 released from repair Schwann cells (RSCs) functions as a ligand in a GDNF-RET-independent manner to promote axon regeneration after peripheral nerve injury (PNI).
View Article and Find Full Text PDFJ Neural Eng
December 2024
Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America.
Peripheral nerve injuries (PNI) represent the most common type of nervous system injuries, resulting in 5 million injuries per year. Current gold standard, autografts, still carry several limitations, including the inappropriate type, size, and function matches in grafted nerves, lack of autologous donor sites, neuroma formation, and secondary surgery incisions. Polymeric nerve conduits, also known as nerve guides, can help overcome the aforementioned issues that limit nerve recovery and regeneration by reducing tissue fibrosis, misdirection of regenerating axons, and the inability to maintain long- distance axonal growth.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Neurology, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania.
Extracellular vesicles (EVs) secreted by astrocytes (ADEVs) mediate numerous biological processes, providing insights into damage, repair, and protection following ischemic stroke (IS). This pilot study aimed to broaden the current knowledge on the astrocyte response to ischemia by dynamically assessing the aquaporin-4 (AQP4) and glial cell line-derived neurotrophic factor (GDNF) as cargo proteins of these vesicles in eighteen acute IS patients and nine controls. EV proteins were detected by Western blotting and followed 24 h (D1), 7 days (D7), and one month (M1) after symptoms onset.
View Article and Find Full Text PDFFront Cell Neurosci
October 2024
Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Geesthacht, Germany.
Front Bioeng Biotechnol
October 2024
Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States.
Introduction: Volumetric muscle loss (VML) is one of the most severe and debilitating conditions in orthopedic and regenerative medicine. Current treatment modalities often fail to restore the normal structure and function of the damaged skeletal muscle. Bioengineered tissue constructs using the patient's own cells have emerged as a promising alternative treatment option, showing positive outcomes in fostering new muscle tissue formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!