A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Long-Cycle-Life Na-Ion Anodes Based on Amorphous Titania Nanotubes--Interfaces and Diffusion. | LitMetric

Long-Cycle-Life Na-Ion Anodes Based on Amorphous Titania Nanotubes--Interfaces and Diffusion.

ACS Appl Mater Interfaces

Institute of Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria.

Published: November 2015

Amorphous self-assembled titania nanotube layers are fabricated by anodization in ethylene glycol based baths. The nanotubes having diameters between 70-130 nm and lengths between 4.5-17 μm are assembled in Na-ion test cells. Their sodium insertion properties and electrochemical behavior with respect to sodium insertion is studied by galvanostatic cycling with potential limitation and cyclic voltammetry. It is found that these materials are very resilient to cycling, some being able to withstand more than 300 cycles without significant loss of capacity. The mechanism of electrochemical storage of Na(+) in the investigated titania nanotubes is found to present significant particularities and differences from a classical insertion reaction. It appears that the interfacial region between titania and the liquid electrolyte is hosting the majority of Na(+) ions and that this interfacial layer has a pseudocapacitive behavior. Also, for the first time, the chemical diffusion coefficients of Na(+) into the amorphous titania nanotubes is determined at various electrode potentials. The low values of diffusion coefficients, ranging between 4 × 10(-20) to 1 × 10(-21) cm(2)/s, support the interfacial Na(+) storage mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.5b07508DOI Listing

Publication Analysis

Top Keywords

amorphous titania
8
sodium insertion
8
titania nanotubes
8
diffusion coefficients
8
titania
5
long-cycle-life na-ion
4
na-ion anodes
4
anodes based
4
based amorphous
4
titania nanotubes--interfaces
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!