Although clinical features, cytogenetics, and mutations are widely used to predict prognosis in patients with acute myeloid leukemia (AML), further refinement of risk stratification is necessary for optimal treatment, especially in cytogenetically normal (CN) patients. We sought to generate a simple gene expression signature as a predictor of clinical outcome through analyzing the mRNA arrays of 158 de novo CN AML patients. We compared the gene expression profiles of patients with poor response to induction chemotherapy with those who responded well. Forty-six genes expressed differentially between the two groups. Among them, expression of 11 genes was significantly associated with overall survival (OS) in univariate Cox regression analysis in 104 patients who received standard intensive chemotherapy. We integrated the z-transformed expression levels of these 11 genes to generate a risk scoring system. Higher risk scores were significantly associated with shorter OS (median 17.0 months vs. not reached, P < 0.001) in ours and another 3 validation cohorts. In addition, it was an independent unfavorable prognostic factor by multivariate analysis (HR 1.116, 95% CI 1.035~1.204, P = 0.004). In conclusion, we developed a simple mRNA expression signature for prognostication in CN-AML patients. This prognostic biomarker will help refine the treatment strategies for this group of patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4770759 | PMC |
http://dx.doi.org/10.18632/oncotarget.5390 | DOI Listing |
STAR Protoc
January 2025
Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA. Electronic address:
Hematopoietic stem cells (HSCs) generate blood and immune cells. Here, we present a protocol to differentiate human pluripotent stem cells (hPSCs) into hematopoietic progenitors that express the signature HSC transcription factors HLF, HOXA5, HOXA7, HOXA9, and HOXA10. hPSCs are dissociated, seeded, and then sequentially differentiated into posterior primitive streak, lateral mesoderm, artery endothelium, hemogenic endothelium, and hematopoietic progenitors through the sequential addition of defined, serum-free media.
View Article and Find Full Text PDFCell Rep
January 2025
Division of Cell Regulation, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Cell Engineering, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Laboratory for Stem Cell Therapy, Faculty of Medicine, Tsukuba University, Ibaraki, Japan. Electronic address:
Hematopoietic stem cells (HSCs) possess the capacity to regenerate the entire hematopoietic system. However, the precise HSC dynamics in the early post-transplantation phase remain an enigma. Clinically, the initial hematopoiesis in the post-transplantation period is critical, necessitating strategies to accelerate hematopoietic recovery.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
Immune checkpoint inhibitor (ICI) therapy is a cornerstone treatment for many cancers, but it can induce severe immunotoxicity, including acute interstitial nephritis (AIN). Currently, kidney biopsy is required to differentiate ICI-AIN from other causes of acute kidney injury (AKI). However, this invasive approach can lead to morbidity, delayed glucocorticoid treatment for patients with AIN, and unnecessarily prolonged suspension of ICI therapy in non-AIN patients.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
Evidence has shown that T-cell receptors (TCRs) that recognize the same epitopes may not be the exact TCR clonotypes but have slightly different TCR sequences. However, the changes in the genomic and transcriptomic signatures of these highly homologous T cells during immunotherapy remain unknown. Here, we examined the evolutionary features in circulating TCR clonotypes observed in tumors (tumor-infiltrating lymphocyte (TIL)-TCRs) by combining single-cell RNA/TCR sequencing of longitudinal blood samples and TCR sequencing of tumor tissue from a patient treated with anti-cytotoxic T-lymphocyte-associated protein 4/programmed cell death protein-1 therapy.
View Article and Find Full Text PDFRegulation of gene expression helps determine various phenotypes in most cellular life forms. It is orchestrated at different levels and at the point of transcription initiation by transcription factors (TFs). TFs bind to DNA through domains that are evolutionarily related, by shared membership of the same superfamilies (TF-SFs), to those found in other nucleic acid binding and protein-binding functions (nTFs for non-TFs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!