Nitric oxide (NO), an important endogenous pulmonary vasodilator is synthetized by the endothelial NO synthase (NOS3). Reduced NO bioavailability and thus the Glu298Asp polymorphism of NOS3 may enhance right ventricular (RV) afterload and hypertrophic remodeling and influence athletic performance. To test this hypothesis world class level athletes (water polo players, kayakers, canoeists, rowers, swimmers, n = 126) with a VO2 maximum greater than 50ml/kg/min were compared with non-athletic volunteers (n = 155). Cardiopulmonary exercise tests and cardiac magnetic resonance imaging (cMRI) were performed to determine structural or functional changes. Genotype distribution of the NOS3 Glu298Asp polymorphism was not affected by gender or physical performance. Cardiac MRI showed increased stroke volume with eccentric hypertrophy in all athletes regardless of their genotype. However, the Asp allelic variant carriers had increased RV mass index (32±6g versus 27±6g, p<0.01) and larger RV stroke volume index (71±10ml versus 64±10ml, p<0.01) than athletes with a Glu/Glu genotype. Genotype was not significantly associated with athletic performance. In the non-athletic group no genotype related differences were detected. The association between the NOS3 Glu298Asp polymorphism and RV structure and dimension in elite athletes emphasizes the importance of NOS3 gene function and NO bioavailability in sport related cardiac adaptation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4627801PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0141680PLOS

Publication Analysis

Top Keywords

glu298asp polymorphism
8
ventricular adaptation
4
adaptation associated
4
associated glu298asp
4
glu298asp variant
4
nos3
4
variant nos3
4
nos3 gene
4
gene elite
4
elite athletes
4

Similar Publications

Influence of endothelial nitric oxide synthase haplotypes on nitric oxide and peroxynitrite productions.

Bioelectrochemistry

February 2025

Department of Chemistry and Biochemistry, Ohio University, Athens, OH, USA. Electronic address:

The impact of four clinically significant genetic variants of endothelial nitric oxide synthase (eNOS) polymorphisms on the concentrations of nitric oxide [NO] and peroxynitrite [ONOO] has been given scant consideration. This study utilized a [NO]/[ONOO] ratio to determine the extent of endothelial dysfunction caused by these variations in the eNOS gene. The single nucleotide polymorphisms (T-786C, C-665T, and Glu298Asp) and a variable number of tandem repeats (intron 4 a/b/c) were genotyped in human umbilical vein endothelial cells (HUVEC), using sanger sequencing and DNA electrophoresis, respectively.

View Article and Find Full Text PDF

The mechanisms by which the ageing process is associated to an unhealthy lifestyle and how they play an essential role in the aetiology of systemic arterial hypertension have not yet been completely elucidated. Our objective is to investigate the influence of NOS3 polymorphisms [-786T > C and (Glu298Asp)] on systolic blood pressure (SBP) and diastolic blood pressure (DBP) response, differentially methylated regions (DMRs), and physical fitness of adult and older women after a 14-week combined training intervention. The combined training was carried out for 14 weeks, performed 3 times a week, totalling 180 minutes weekly.

View Article and Find Full Text PDF

Background: The endothelial nitric oxide synthase (eNOS) gene deficiency is known to cause impaired coronary vasodilating capability in animal models. In the general clinical population, the eNOS gene polymorphisms, able to affect eNOS activity, were associated with cardiometabolic risk features and prevalence of coronary artery disease (CAD).

Aim: To investigate the association of eNOS Glu298Asp gene polymorphism, cardiometabolic profile, obstructive CAD and inducible myocardial ischemia in patients with suspected stable CAD.

View Article and Find Full Text PDF

Background: Genetic polymorphism in endothelial Nitric Oxide Synthase (eNOS) are associated with occurrence of multiple cardiovascular diseases (CVDs).

Methods: This study included 300 young ST-segment elevation myocardial infarction (STEMI) patients and 300 healthy controls. STEMI patients were divided into two groups: premature coronary artery disease [CAD] (STEMI<40 years of age) and older STEMI (>40 years of age).

View Article and Find Full Text PDF
Article Synopsis
  • A study investigated the link between specific genetic polymorphisms and ST elevation Myocardial Infarction in young Mexican individuals, involving 350 patients under 45 and 350 matched controls.
  • The A1166C polymorphism was found to significantly increase the risk of Myocardial Infarction, while G20210A, G1691A, 97G > T, and A1298C did not show a similar association.
  • Other factors like dyslipidemia, hypertension, smoking, and family history were also linked to increased risks, indicating that genetic variations might contribute to early cardiovascular issues, but more research is needed on gene interactions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!