Lutzomyia longipalpis urbanisation and control.

Mem Inst Oswaldo Cruz

Laboratório de Transmissores de Leishmanioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil.

Published: November 2015

Since the description of Lutzomyia longipalpis by Lutz and Neiva more than 100 years ago, much has been written in the scientific literature about this phlebotomine species. Soares and Turco (2003) and Lainson and Rangel (2005) have written extensive reviews focused on vector-host-parasite interactions and American visceral leishmaniasis ecology. However, during the last two decades, the success of Lu. longipalpis in colonising urban environments and its simultaneous geographical spreading have led to new theoretical and operational questions. Therefore, this review updates the general information about this species and notes the more challenging topics regarding the new scenario of urbanisation-spreading and its control in America. Here, we summarise the literature on these issues and the remaining unsolved questions, which pose recommendations for operational research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4660613PMC
http://dx.doi.org/10.1590/0074-02760150207DOI Listing

Publication Analysis

Top Keywords

lutzomyia longipalpis
8
longipalpis urbanisation
4
urbanisation control
4
control description
4
description lutzomyia
4
longipalpis lutz
4
lutz neiva
4
neiva 100
4
100 years
4
years ago
4

Similar Publications

Intestinal flow and digestive parameters of Lutzomyia longipalpis larvae.

J Insect Physiol

January 2025

Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil. Electronic address:

Lutzomyia longipalpis Lutz & Neiva, 1912 (Diptera, Psychodidae), is the primary vector of Leishmania infantum Nicole, 1908, the etiological agent of American visceral leishmaniasis. During their development, sandfly larvae pass through four instars, consuming soil particles enriched with microorganisms and decomposing organic material. In numerous insect species, the intestinal epithelium not only secretes digestive enzymes and absorbs digested nutrients but also carries out additional functions, such as regulating luminal pH and facilitating the absorption or secretion of ions and water.

View Article and Find Full Text PDF

Leishmania mexicana N-Acetyltransferease 10 Is Important for Polysome Formation and Cell Cycle Progression.

Mol Microbiol

January 2025

Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil.

Leishmania presents a complex life cycle that involves both invertebrate and vertebrate hosts. By regulating gene expression, protein synthesis, and metabolism, the parasite can adapt to various environmental conditions. This regulation occurs mainly at the post-transcriptional level and may involve epitranscriptomic modifications of RNAs.

View Article and Find Full Text PDF

The first identification of Lutzomyia longipalpis (Lutz & Neiva, 1912) in Macapá, Amapá.

Rev Saude Publica

November 2024

Universidade de São Paulo. Faculdade de Saúde Pública. Departamento de Epidemiologia. São Paulo, SP, Brasil.

Lutzomyia longipalpis (Lutz & Neiva, 1912) constitutes the most epidemiologically relevant vector of visceral leishmaniasis (VL) in the New World. On October 25, 2023, the Macapá Center for Strategic Information in Health Surveillance registered a case of VL in the Km9 neighborhood, in Macapá. This study aimed to describe the Phlebotominae species in this area to assist the confirmation of the autochthony of the case.

View Article and Find Full Text PDF

Background: Visceral leishmaniasis (VL) is a zoonotic disease caused by Leishmania infantum and transmitted by the sand fly Lutzomyia longipalpis. Dogs are the major domestic reservoir of L. infantum.

View Article and Find Full Text PDF

We investigated gene expression patterns in Lutzomyia and Phlebotomus sand fly vectors of leishmaniases. Using quantitative PCR, we assessed the expression stability of potential endogenous control genes commonly used in dipterans. We analyzed Lutzomyia longipalpis and Phlebotomus papatasi samples from L3 and L4 larval stages, adult sand flies of different sexes, diets, dsRNA injection, and Leishmania infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!