Polyallelic structural variants can provide accurate, highly informative genetic markers focused on diagnosis and therapeutic targets: Accuracy vs. Precision.

Clin Pharmacol Ther

Joseph & Kathleen Bryan Alzheimer's Disease Research Center, Department of Neurology, Duke University Medical Center, Durham, North Carolina, USA.

Published: February 2016

Structural variants (SVs) include all insertions, deletions, and rearrangements in the genome, with several common types of nucleotide repeats including single sequence repeats, short tandem repeats, and insertion-deletion length variants. Polyallelic SVs provide highly informative markers for association studies with well-phenotyped cohorts. SVs can influence gene regulation by affecting epigenetics, transcription, splicing, and/or translation. Accurate assays of polyallelic SV loci are required to define the range and allele frequency of variable length alleles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737274PMC
http://dx.doi.org/10.1002/cpt.288DOI Listing

Publication Analysis

Top Keywords

structural variants
8
highly informative
8
polyallelic structural
4
variants provide
4
provide accurate
4
accurate highly
4
informative genetic
4
genetic markers
4
markers focused
4
focused diagnosis
4

Similar Publications

Generalized Hartree-Fock (GHF) is a long-established electronic structure method that can lower the energy (compared to spin-restricted variants) by breaking physical wave function symmetries, namely and . After an exposition of GHF theory, we assess the use of GHF trial wave functions in phaseless auxiliary field quantum Monte Carlo (ph-AFQMC-G) calculations of strongly correlated molecular systems including symmetrically stretched hydrogen rings, carbon dioxide, and dioxygen. Imaginary time propagation is able to restore symmetry and yields energies of comparable or better accuracy than CCSD(T) with unrestricted HF and GHF references, and consistently smooth dissociation curves─a remarkable result given the relative scalability of ph-AFQMC-G to larger system sizes.

View Article and Find Full Text PDF

Malan syndrome (MALNS) is an ultra-rare genetic disorder caused by heterozygous chromosomal microdeletions involving the 19p13.2 region or loss-of-function variants in the gene. It is characterized by specific phenotypical features, intellectual disability (ID), and limitations in adaptive functioning and behavioral problems.

View Article and Find Full Text PDF

Congenital heart disease (CHD) represents nearly one-third of congenital birth defects annually, with ventricular septal defect (VSD) being the most common type. The aim of this study was to explore the role of specific GATA binding protein 6 gene () mutations as a potential etiological factor in the development of VSD through an in silico approach. Data were collected from the human gene databases: DisGeNET and GeneCards, with protein-protein interaction networks constructed via STRING and Cytoscape.

View Article and Find Full Text PDF

Aim: 3D-printed scaffolds loaded with healing directed agents could be employed for better treatment outcome in regenerative dentistry. The aim of this study was to fabricate and characterize simple 3D-printed poly lactic acid (PLA) scaffolds coated with nanoHydroxyapatite (nHA), Naringin (NAR), or their combination, and testing their morphological, chemical, mechanical, antibacterial, biocompatible and bioactive properties.

Methodology: Two variants pore sizes, 300 and 700 μm, of 3D-printed PLA disc scaffolds measuring (10 × 1 mm) were fabricated.

View Article and Find Full Text PDF

A rare haplotype of the GJD3 gene segregating in familial Meniere's disease interferes with connexin assembly.

Genome Med

January 2025

Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitario, Ibs.GRANADA, Universidad de Granada, 18071, Granada, Spain.

Background: Familial Meniere's disease (FMD) is a rare polygenic disorder of the inner ear. Mutations in the connexin gene family, which encodes gap junction proteins, can also cause hearing loss, but their role in FMD is largely unknown.

Methods: We retrieved exome sequencing data from 94 individuals in 70 Meniere's disease (MD) families.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!