Atomically thin materials such as graphene and semiconducting transition metal dichalcogenides (TMDCs) have attracted extensive interest in recent years, motivating investigation into multiple properties. In this work, we demonstrate a refined version of the optothermal Raman technique to measure the thermal transport properties of two TMDC materials, MoS2 and MoSe2, in single-layer (1L) and bilayer (2L) forms. This new version incorporates two crucial improvements over previous implementations. First, we utilize more direct measurements of the optical absorption of the suspended samples under study and find values ∼40% lower than previously assumed. Second, by comparing the response of fully supported and suspended samples using different laser spot sizes, we are able to independently measure the interfacial thermal conductance to the substrate and the lateral thermal conductivity of the supported and suspended materials. The approach is validated by examining the response of a suspended film illuminated in different radial positions. For 1L MoS2 and MoSe2, the room-temperature thermal conductivities are 84 ± 17 and 59 ± 18 W/(m·K), respectively. For 2L MoS2 and MoSe2, we obtain values of 77 ± 25 W and 42 ± 13 W/(m·K). Crucially, the interfacial thermal conductance is found to be of order 0.1-1 MW/m(2) K, substantially smaller than previously assumed, a finding that has important implications for design and modeling of electronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.5b08580DOI Listing

Publication Analysis

Top Keywords

mos2 mose2
16
interfacial thermal
12
thermal conductivity
8
optothermal raman
8
raman technique
8
suspended samples
8
supported suspended
8
thermal conductance
8
thermal
6
measurement lateral
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!