Chitosanases from Family 46 of Glycoside Hydrolases: From Proteins to Phenotypes.

Mar Drugs

Biologie, Faculté des Sciences, Université de Sherbrooke, 2500, boul. de l'Université, Sherbrooke, QC J1K 2R1, Canada.

Published: October 2015

Chitosanases, enzymes that catalyze the endo-hydrolysis of glycolytic links in chitosan, are the subject of numerous studies as biotechnological tools to generate low molecular weight chitosan (LMWC) or chitosan oligosaccharides (CHOS) from native, high molecular weight chitosan. Glycoside hydrolases belonging to family GH46 are among the best-studied chitosanases, with four crystallography-derived structures available and more than forty enzymes studied at the biochemical level. They were also subjected to numerous site-directed mutagenesis studies, unraveling the molecular mechanisms of hydrolysis. This review is focused on the taxonomic distribution of GH46 proteins, their multi-modular character, the structure-function relationships and their biological functions in the host organisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4663542PMC
http://dx.doi.org/10.3390/md13116566DOI Listing

Publication Analysis

Top Keywords

glycoside hydrolases
8
molecular weight
8
weight chitosan
8
chitosanases family
4
family glycoside
4
hydrolases proteins
4
proteins phenotypes
4
phenotypes chitosanases
4
chitosanases enzymes
4
enzymes catalyze
4

Similar Publications

Objectives: Pancreatic duct leaks can cause ascites, and fluid amylase can be used as a marker to suggest pancreatic duct leak; however, there is no reference parameter or cutoff value for diagnosis. We assessed whether a novel ratio of ascitic fluid to serum amylase can reliably predict pancreatic leaks and need for endoscopic retrograde cholangiopancreatography (ERCP).

Materials And Methods: Patients who had fluid amylase from ascitic fluid and serum amylase within one week of confirmed pancreatic leaks via ERCP were included along with appropriate medical and surgical controls.

View Article and Find Full Text PDF

Enhancing protein O-GlcNAcylation by pharmacological inhibition of the enzyme O-GlcNAcase (OGA) has been considered as a strategy to decrease tau and amyloid-beta phosphorylation, aggregation, and pathology in Alzheimer's disease (AD). There is still more to be learned about the impact of enhancing global protein O-GlcNAcylation, which is important for understanding the potential of using OGA inhibition to treat neurodegenerative diseases. In this study, we investigated the acute effect of pharmacologically increasing O-GlcNAc levels, using the OGA inhibitor Thiamet G (TG), in normal mouse brains.

View Article and Find Full Text PDF

Ethnomedicine exhibits potential in developing affordable effective antidiabetic agents. This work aimed to explore the antidiabetic properties of latex extract both in vivo, utilizing alloxan-induced diabetic rats, and in vitro, through -amylase enzyme testing. Additionally, it sought to formulate optimal effervescent granules derived from the extract.

View Article and Find Full Text PDF

Introduction: Arterial vascular occlusion is a rare complication of dermal filler injection. This case report describes the successful use of hyperbaric oxygen therapy in a patient with vascular occlusion after a permanent dermal filler was injected.

Case Report: A 51-year-old woman underwent an injection of non-resorbable polymethylmethacrylate microspheres into her nasolabial folds.

View Article and Find Full Text PDF

Structure and function of a β-1,2-galactosidase from Bacteroides xylanisolvens, an intestinal bacterium.

Commun Biol

January 2025

Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.

Galactosides are major carbohydrates that are found in plant cell walls and various prebiotic oligosaccharides. Studying the detailed biochemical functions of β-galactosidases in degrading these carbohydrates is important. In particular, identifying β-galactosidases with new substrate specificities could help in the production of potentially beneficial oligosaccharides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!