Introduction: Hyperglycemia is the main cause of diabetic complications, contributing to a widespread degeneration of the nervous system. Nevertheless, the main focus has been the sensory neurons because of neuropathic pain, while the impairments associated with the spinal cord and motor deficits, mostly of those initiated at early stages of the disease, have been poorly investigated. In this way, the present study used the nonobese diabetic mouse model to evaluate the microenvironment around motoneurons at ventral horn of the spinal cord, following prolonged hyperglycemia.
Methods: Adult female mice were divided into two groups: spontaneously diabetic (n = 33) and nondiabetic (n = 26). Mice were considered hyperglycemic when blood glucose surpassed 400 mg/dL. Following 2 weeks from that stage, part of the animals was euthanized and the lumbar intumescences were obtained and processed for immunohistochemistry and transmission electron microscopy. For immunohistochemistry, the antibodies used for integrated density of pixels quantification were anti-synaptophysin, anti-GFAP, and anti-Iba1. The functional analysis was monitored with the walking track test (CatWalk system) during 4 weeks.
Results: The results revealed significant motor impairment in diabetic animals in comparison to the control group. Such loss of motor control correlated with a significant reduction in presynaptic terminals apposed to the motoneurons. Nevertheless, there were no significant changes in glial reaction in the spinal cord.
Conclusion: Overall, the results herein revealed central nervous system changes at early stages of the disease that may in turn contribute to the motor deficit. Such changes open a new window of investigation in early stages of diabetes to better comprehend motor impairment as a long-term complication of the disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4614060 | PMC |
http://dx.doi.org/10.1002/brb3.372 | DOI Listing |
Neurol Sci
January 2025
Hematology Unit, Careggi University Hospital, Florence, Italy.
Background: The coexistence of sickle cell anemia and multiple sclerosis in a single patient presents a rare and challenging clinical scenario, possibly favoured by the interplay between chronic inflammatory states and autoimmune processes.
Methos/results: We present the case of a 36-year-old woman with sickle cell anemia who developed progressive neurological symptoms leading to frequent falls and paraparesis; magnetic resonance imaging showed many periventricular, infratentorial, and both cervical and dorsal spinal cord lesions, leading to a diagnosis of multiple sclerosis. After a multidisciplinary approach the patient was successfully started on ofatumumab.
Cureus
December 2024
Department of Orthopaedics, Tokyo Metropolitan Bokutoh Hospital, Tokyo, JPN.
Hypertrophic pachymeningitis (HP) is a rare inflammatory disease that causes the thickening of the dura mater. Its etiology is mainly classified as idiopathic or secondary, and autoimmune disease is one of the main causes of secondary HP. Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis and IgG4-related disease are common among autoimmune diseases.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China.
Spinal microglia and astrocytes are both involved in neuropathic and inflammatory pain, which may display sexual dimorphism. Here, we demonstrate that the sustained activation of spinal astrocytes and astrocyte-derived interleukin (IL)-17A promotes the progression of mouse bone cancer pain without sex differences. Chemogenetic or pharmacological inhibition of spinal astrocytes effectively ameliorates bone cancer-induced pain-like behaviors.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, China.
Background: Spinal cord injury (SCI) triggers a complex inflammatory response that impedes neural repair and functional recovery. The modulation of macrophage phenotypes is thus considered a promising therapeutic strategy to mitigate inflammation and promote regeneration.
Methods: We employed microarray and single-cell RNA sequencing (scRNA-seq) to investigate gene expression changes and immune cell dynamics in mice following crush injury at 3 and 7 days post-injury (dpi).
Sci Rep
January 2025
Department of Neurology, Neuroscience Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea.
Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is a rare white matter disease characterized by axonal and glial injury. Although its clinical characteristics have been described in case reports, the prevalence of CSF1R mutations in clinically suspected ALSP cases remains unclear. Herein, we analysed the frequency of CSF1R mutations in patients with probable or possible ALSP and describe the genetic, clinical, radiological, and pathological findings of ALSP cases in individuals of Korean ancestry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!