Single fluorophore melting curve analysis for detection of hypervirulent Clostridium difficile.

J Med Microbiol

Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, USA.

Published: January 2016

This study demonstrates a novel detection assay able to identify and subtype strains of Clostridium difficile. Primers carefully designed for melting curve analysis amplify DNA from three C. difficile genes, tcdB, tcdC and cdtB, during quantitative (q)PCR. The tcdB gene allows for confirmation of organism presence, whilst the tcdC and cdtB genes allow for differentiation of virulence status, as deletions in the tcdC gene and the concurrent presence of the cdtB gene, which produces binary toxin, are associated with hypervirulence. Following qPCR, subtyping is then achieved by automated, inline melting curve analysis using only a single intercalating dye and verified by microchip electrophoresis. This assay represents a novel means of distinguishing between toxigenic and hypervirulent C. difficile strains NAP1/027/BI and 078 ribotype, which are highly prevalent hypervirulent strains in humans. This methodology can help rapidly detect and identify C. difficile strains that impose a significant health and economic burden in hospitals and other healthcare settings.

Download full-text PDF

Source
http://dx.doi.org/10.1099/jmm.0.000199DOI Listing

Publication Analysis

Top Keywords

melting curve
12
curve analysis
12
clostridium difficile
8
tcdc cdtb
8
difficile strains
8
difficile
5
single fluorophore
4
fluorophore melting
4
analysis detection
4
detection hypervirulent
4

Similar Publications

Background: Accurate and timely diagnosis of mycobacterial infections, including complex (MTBC) and nontuberculous mycobacteria (NTM), is crucial for effective disease management.

Methods: This study evaluated the performance of the NeoPlex TB/NTM-5 Detection Kit (NeoPlex assay, Seongnam, Republic of Korea), a multiplex real-time PCR assay that incorporates melting curve analysis, compared with the line-probe assay (LPA). The NeoPlex assay could simultaneously detect and differentiate MTBC from five other NTM species: , , , , and .

View Article and Find Full Text PDF

Digital Melting Curve Analysis for Multiplex Quantification of Nucleic Acids on Droplet Digital PCR.

Biosensors (Basel)

January 2025

State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2, Nanjing 210096, China.

We present a cost-effective and simple multiplex nucleic acid quantification method using droplet digital PCR (ddPCR) with digital melting curve analysis (MCA). This approach eliminates the need for complex fluorescent probe design, reducing both costs and dependence on fluorescence channels. We developed a convolutional neighborhood search algorithm to correct droplet displacement during heating, ensuring precise tracking and accurate extraction of melting curves.

View Article and Find Full Text PDF

The purpose of this study was to improve the quality of frozen-thawed canine spermatozoa through the optimization of glycerol concentration (GC) and freezing rate in the semen freezing protocol. Ejaculates from nine dogs were diluted with an extender containing 0%, 1.5%, 3%, 6%, or 9% glycerol.

View Article and Find Full Text PDF

A new centrifugal hypergravity piston cylinder apparatus.

Rev Sci Instrum

January 2025

Center for Hypergravity Experiment and Interdisciplinary Research, Zhejiang University, Hangzhou 310058, China.

Hypergravity high-temperature and high-pressure experiments are a powerful tool for studying geological processes over long periods. A new centrifugal hypergravity piston cylinder apparatus has been developed for beam centrifuge. The unique design of this centrifugal hypergravity piston cylinder apparatus is that the hydraulic system and the press are relatively independent.

View Article and Find Full Text PDF

Modification of silica interfaces by covalent attachment of functional ligands is a primary means of controlling the interfacial chemistry of porous silicas used in separations, environmental cleanup, and biosensing. Recently, modification of hydrophobic, -alkyl-silane-functionalized interfaces has been achieved through self-assembly of zwitterionic phospholipids or mixed-charged surfactants to form "hybrid bilayers", producing interfaces that mimic lipid-bilayer partitioning and provide shape-selective partitioning of aromatic hydrocarbons. Charged headgroups, however, introduce electrostatic interactions that strongly influence the retention of ionizable solutes and require careful control over pH and ionic strength in the solution phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!