Astrocytes orchestrate arrangement and functions of neuronal circuits and of the blood-brain barrier. Dysfunctional astrocytes characterize mood disorders, here showcased by deregulation of the astrocyte end-feet protein Aquaporin-4 around blood vessels and, hypothetically, of the astrocyte-specific phagocytic protein MEGF10 to shape synapses. Development of mood disorders is often a result of 'gene × environment' interactions, regulated among others by histone modifications and related modulator enzymes, which rapidly promote adaptive responses. Thus, they represent ideal targets of drugs aimed at inducing stable effects with quick onsets. One of the prevalent features of histone modifications and their modulators is their cell-type specificity. Investigating cell type-specific epigenetic modulations upon drug administration might therefore help to implement therapeutic treatments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4716874PMC
http://dx.doi.org/10.1016/j.coph.2015.10.002DOI Listing

Publication Analysis

Top Keywords

histone modifications
12
mood disorders
12
cell type-specific
8
pharmacological modulation
4
modulation astrocytes
4
astrocytes role
4
role cell
4
type-specific histone
4
modifications treatment
4
treatment mood
4

Similar Publications

Motivation: Histone modifications play an important role in transcription regulation. Although the general importance of some histone modifications for transcription regulation has been previously established, the relevance of others and their interaction is subject to ongoing research. By training Machine Learning models to predict a gene's expression and explaining their decision making process, we can get hints on how histone modifications affect transcription.

View Article and Find Full Text PDF

SYNGAP1 is a Ras GTPase-activating protein that plays a crucial role during brain development and in synaptic plasticity. Sporadic heterozygous mutations in SYNGAP1 affect social and emotional behaviour observed in intellectual disability (ID) and autism spectrum disorder (ASD). Although neurophysiological deficits have been extensively studied, the epigenetic landscape of SYNGAP1 mutation-mediated intellectual disability is unexplored.

View Article and Find Full Text PDF

RNA N6-methyladenosine (m6A) plays diverse roles in RNA metabolism and its deregulation contributes to tumor initiation and progression. Clear cell renal cell carcinoma (ccRCC) is characterized by near ubiquitous loss of followed by mutations in epigenetic regulators , , and . Mutations in , a histone H3 lysine 36 trimethylase (H3K36me3), are associated with reduced survival, greater metastatic propensity, and metabolic reprogramming.

View Article and Find Full Text PDF

Research on the function of epigenetic regulation in the inflammation of non-alcoholic fatty liver disease.

Life Med

August 2024

Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Changle West Road, Xincheng District, Xi'an, Shaanxi 710032, China.

Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver condition, characterized by a spectrum that progresses from simple hepatic steatosis to nonalcoholic steatohepatitis, which may eventually lead to cirrhosis and hepatocellular carcinoma. The precise pathogenic mechanisms underlying NAFLD and its related metabolic disturbances remain elusive. Epigenetic modifications, which entail stable transcriptional changes without altering the DNA sequence, are increasingly recognized as pivotal.

View Article and Find Full Text PDF

functional validation of anti-CD19 chimeric antigen receptor T cells expressing lysine-specific demethylase 1 short hairpin RNA for the treatment of diffuse large B cell lymphoma.

Front Immunol

January 2025

Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.

Background: Chimeric antigen receptor T (CAR-T) cell therapy is more effective in relapsed or refractory diffuse large B cell lymphoma (DLBCL) than other therapies, but a high proportion of patients relapse after CAR-T cell therapy owing to antigen escape, limited persistence of CAR-T cells, and immunosuppression in the tumor microenvironment. CAR-T cell exhaustion is a major cause of relapse. Epigenetic modifications can regulate T cell activation, maturation and depletion; they can be applied to reduce T cell depletion, improve infiltration, and promote memory phenotype formation to reduce relapse after CAR-T cell therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!