Fluoxetine Facilitates Fear Extinction Through Amygdala Endocannabinoids.

Neuropsychopharmacology

Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD, USA.

Published: May 2016

Pharmacologically elevating brain endocannabinoids (eCBs) share anxiolytic and fear extinction-facilitating properties with classical therapeutics, including the selective serotonin reuptake inhibitor, fluoxetine. There are also known functional interactions between the eCB and serotonin systems and preliminary evidence that antidepressants cause alterations in brain eCBs. However, the potential role of eCBs in mediating the facilitatory effects of fluoxetine on fear extinction has not been established. Here, to test for a possible mechanistic contribution of eCBs to fluoxetine's proextinction effects, we integrated biochemical, electrophysiological, pharmacological, and behavioral techniques, using the extinction-impaired 129S1/Sv1mJ mouse strain. Chronic fluoxetine treatment produced a significant and selective increase in levels of anandamide in the BLA, and an associated decrease in activity of the anandamide-catabolizing enzyme, fatty acid amide hydrolase. Slice electrophysiological recordings showed that fluoxetine-induced increases in anandamide were associated with the amplification of eCB-mediated tonic constraint of inhibitory, but not excitatory, transmission in the BLA. Behaviorally, chronic fluoxetine facilitated extinction retrieval in a manner that was prevented by systemic or BLA-specific blockade of CB1 receptors. In contrast to fluoxetine, citalopram treatment did not increase BLA eCBs or facilitate extinction. Taken together, these findings reveal a novel, obligatory role for amygdala eCBs in the proextinction effects of a major pharmacotherapy for trauma- and stressor-related disorders and anxiety disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4832021PMC
http://dx.doi.org/10.1038/npp.2015.318DOI Listing

Publication Analysis

Top Keywords

fear extinction
8
proextinction effects
8
chronic fluoxetine
8
fluoxetine
6
ecbs
6
fluoxetine facilitates
4
facilitates fear
4
extinction
4
extinction amygdala
4
amygdala endocannabinoids
4

Similar Publications

Fear extinction retention in children, adolescents, and adults.

Dev Cogn Neurosci

January 2025

Department of Medical Sciences, Experimental Cognitive and Affective Neuroscience Lab, Uppsala University, Uppsala, Sweden. Electronic address:

Past results suggest that fear extinction and the return of extinguished fear are compromised in adolescents. However, findings have been inconclusive as there is a lack of fear extinction and extinction retention studies including children, adolescents and adults. In the present study, 36 children (6-9 years), 40 adolescents (13-17 years) and 44 adults (30-40 years), underwent a two-day fear conditioning task.

View Article and Find Full Text PDF

High Intensity Approaches to Exposure and Response Prevention for Obsessive-Compulsive Disorder.

Behav Brain Res

January 2025

Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, United States.

Obsessive-compulsive disorder (OCD) is a debilitating psychiatric condition with multidetermined etiological and maintaining mechanisms. Cognitive behavioral therapy (CBT), specifically exposure and response prevention (ERP), is the first line behavioral intervention to treat OCD. ERP directly targets threat learning that characterizes OCD through processes of habituation (fear extinction) and inhibitory learning, in addition to eliciting neuronal changes implicated in OCD.

View Article and Find Full Text PDF

Cpeb1 remodels cell type-specific translational program to promote fear extinction.

Sci Adv

January 2025

Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.

Protein translation is crucial for fear extinction, a process vital for adaptive behavior and mental health, yet the underlying cell-specific mechanisms remain elusive. Using a Tet-On 3G genetic approach, we achieved precise temporal control over protein translation in the infralimbic medial prefrontal cortex () during fear extinction. In addition, our results reveal that the disruption of cytoplasmic polyadenylation element binding protein 1 (Cpeb1) leads to notable alterations in cell type-specific translational programs, thereby affecting fear extinction.

View Article and Find Full Text PDF

Dysfunction in fear and stress responses is intrinsically linked to various neurological diseases, including anxiety disorders, depression, and Post-Traumatic Stress Disorder. Previous studies using in vivo models with Immediate-Extinction Deficit (IED) and Stress Enhanced Fear Learning (SEFL) protocols have provided valuable insights into these mechanisms and aided the development of new therapeutic approaches. However, assessing these dysfunctions in animal subjects using IED and SEFL protocols can cause significant pain and suffering.

View Article and Find Full Text PDF

Transcutaneous auricular vagus nerve stimulation (taVNS) has been tested as a strategy to facilitate fear extinction learning based on the hypothesis that taVNS increases central noradrenergic activity. Four studies out of six found taVNS to enhance extinction learning especially at the beginning of extinction. Facilitatory effects of taVNS were mainly observed in US expectancy, less in fear-potentiated startle (FPS), and not in the skin conductance response (SCR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!