Objectives: This study aims to investigate whether there is any significant difference in bending resistance between titanium and stainless steel locking screws of femur nails and to review deformation of locking screws which is a common problem in interlocking nailing.

Materials And Methods: In this study, a total of 60 pieces of 5 mm major diameter titanium and stainless steel locking screws were used as six groups in three different thread depth structures (high threaded, low threaded, and unthreaded). Three-point bending tests were conducted on steel screws placed inside stainless steel tube with 30 mm inner diameter, which imitated the level of lesser trochanter. We used an axial compression testing machine in order to determine the yield points that permanent deformation occurred in the locking screws.

Results: For low threaded locking screws, which are the most frequently used thread type for locking screws, the mean bending yield points were 1413 N on the titanium screws and this level was below 1922 N (2.8 BW) of level walking loading on femur for 70 kg person. On low threaded stainless screws, bending resistance was 2071 N, which was above the value of 1922 N. For high threaded locking screws, the mean bending yield points were 874 N on the titanium screws and 556 N on stainless screws.

Conclusion: In comminuted femur shaft fractures (in full load bearing conditions), using stainless steel locking screws is better instead of titanium screws to avoid locking screw deformation since low threaded stainless steel screws were 46.5% more resistant to bending deformation than titanium ones. Stainless steel or titanium high threaded locking screws may only be carefully used in non-comminuted fractures.

Download full-text PDF

Source
http://dx.doi.org/10.5606/ehc.2015.30DOI Listing

Publication Analysis

Top Keywords

locking screws
36
stainless steel
28
titanium stainless
16
steel locking
16
low threaded
16
screws
15
bending resistance
12
high threaded
12
yield points
12
threaded locking
12

Similar Publications

A tension system for angular correction of bent intramedullary nails: in vitro analysis.

Eur J Orthop Surg Traumatol

December 2024

Department of Orthopedics and Trauma, Universidade Federal Fluminense (UFF), Niterói, Rio de Janeiro, Brazil.

Purpose: Although several techniques have been described for bent intramedullary nail removal, there is no universally accepted strategy. We hypothesized that a device based on the action principle of a three-point bend fixture could facilitate extraction of bent intramedullary nails; this paper describes its design and experimental testing.

Methods: Five large synthetic left femurs and five steel intramedullary nails were used.

View Article and Find Full Text PDF

Higher interfragmentary compression force improves lateral tibial plateau fracture stability using locking plate fixation: experimental and simulation verification.

BMC Musculoskelet Disord

December 2024

Department of Anatomy, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Virtual & Reality Experimental Education Center for Medical Morphology, School of Basic Medical Sciences, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou, Guangdong, 510515, China.

Background: This study investigated the impact of higher interfragmentary compression force (IFCF) on the stability of locking plate fixation in lateral tibial plateau fractures.

Methods: Biomechanical experiments and finite element analysis (FEA) were employed to compare the performance of the AO cancellous lag screw (AOCLS) and a newly developed combined cancellous lag screw (CCLS).

Results: The results demonstrated that the CCLS provided a higher IFCF without the risk of over-screwing, significantly improving fixation stability.

View Article and Find Full Text PDF

Background: Costal cartilage injuries are unappreciated, and there is a paucity of reports on fixation methods. This study aims to evaluate the safety of titanium plate internal fixation for costal cartilage injuries.

Methods: A retrospective analysis was conducted on 30 patients with costal cartilage injuries who underwent titanium plate internal fixation between April 2016 and November 2022 at our hospital.

View Article and Find Full Text PDF

Background: Achieving bony union in scaphoid nonunion fractures is challenging. Various bone grafts have been studied using headless compression screws (HCS) fixation. However, the impact of bone graft choice on bone healing with volar locking plates (VLP) use is less clear.

View Article and Find Full Text PDF

The purpose of this study was to establish typical dose values at orthopaedic operating rooms of the Larnaca General Hospital (LGH). Kerma area product (KAP), fluoroscopy time (FT) and cumulative air-kerma (K) measurements were collected for 821 patients who underwent common and reproducible trauma surgery over a five-year period, with three mobile C-arm systems; two equipped with an image-intensifier and one with a flat-panel detector. Dose indices were automatically extracted from radiation dose structured reports or DICOM meta-data files archived in the PACS, using custom-made software.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!