This work introduces a method for detection of premature ventricular contractions (PVCs) in photoplethysmogram (PPG). The method relies on 6 features, characterising PPG pulse power, and peak-to-peak intervals. A sliding window approach is applied to extract the features, which are later normalized with respect to an estimated heart rate. Artificial neural network with either linear and non-linear outputs was investigated as a feature classifier. PhysioNet databases, namely, the MIMIC II and the MIMIC, were used for training and testing, respectively. After annotating the PPGs with respect to synchronously recorded electrocardiogram, two main types of PVCs were distinguished: with and without the observable PPG pulse. The obtained sensitivity and specificity values for both considered PVC types were 92.4/99.9% and 93.2/99.9%, respectively. The achieved high classification results form a basis for a reliable PVC detection using a less obtrusive approach than the electrocardiography-based detection methods.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBCAS.2015.2477437DOI Listing

Publication Analysis

Top Keywords

detection premature
8
premature ventricular
8
ventricular contractions
8
ppg pulse
8
photoplethysmography-based method
4
method automatic
4
detection
4
automatic detection
4
contractions work
4
work introduces
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!