Magnesium chelatase catalyzes the first committed step in chlorophyll biosynthesis by inserting a Mg(2+) ion into protoporphyrin IX in an ATP-dependent manner. The cyanobacterial (Synechocystis) and higher-plant chelatases exhibit a complex cooperative response to free magnesium, while the chelatases from Thermosynechococcus elongatus and photosynthetic bacteria do not. To investigate the basis for this cooperativity, we constructed a series of chimeric ChlD proteins using N-terminal, central, and C-terminal domains from Synechocystis and Thermosynechococcus. We show that five glutamic acid residues in the C-terminal domain play a major role in this process.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biochem.5b01080DOI Listing

Publication Analysis

Top Keywords

glutamic acid
8
acid residues
8
residues c-terminal
8
c-terminal domain
8
play major
8
major role
8
magnesium chelatase
8
domain chld
4
chld subunit
4
subunit play
4

Similar Publications

A morphologically transformable hypoxia-induced radical anion for tumor-specific photothermal therapy.

Acta Pharm Sin B

December 2024

State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.

Tumor microenvironment activatable therapeutic agents and their effective tumor accumulation are significant for selective tumor treatment. Herein, we provide an unadulterated nanomaterial combining the above advantages. We synthesize a perylene diimide (PDI) molecule substituted by glutamic acid (Glu), which can self-assemble into small spherical nanoparticles (PDI-SG) in aqueous solution.

View Article and Find Full Text PDF

Background: The imbalance of glutamate (Glu) and gamma-aminobutyric acid (GABA) neurotransmitter system plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Riluzole is a Glu modulator originally approved for amyotrophic lateral sclerosis that has shown potential neuroprotective effects in various neurodegenerative disorders. However, whether riluzole can improve Glu and GABA homeostasis in AD brain and its related mechanism of action remain unknown.

View Article and Find Full Text PDF

Optimization and characterization studies of poultry waste valorization for peptone production using a newly Egyptian Bacillus subtilis strain.

AMB Express

January 2025

Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra, P.O. Box 68, Cairo, 11241, Egypt.

Valorization of poultry waste is a significant challenge addressed in this study, which aimed to produce cost-effective and sustainable peptones from poultry waste. The isolation process yielded the highly potent proteolytic B.subtilis isolate P6, identified through 16S rRNA gene sequencing to share 94% similarity with the B.

View Article and Find Full Text PDF

The metabotropic glutamate receptors (mGlus) are class C G protein-coupled receptors (GPCR) that form obligate dimers activated by the major excitatory neurotransmitter L-glutamate. The architecture of mGlu receptor comprises an extracellular Venus-Fly Trap domain (VFT) connected to the transmembrane domain (7TM) through a Cysteine-Rich Domain (CRD). The binding of L-glutamate in the VFTs and subsequent conformational change results in the signal being transmitted to the 7TM inducing G protein binding and activation.

View Article and Find Full Text PDF

New Onset Refractory Status Epilepticus (NORSE) is a rare and severe condition characterized by refractory seizures in individuals without a prior history of epilepsy. This case report describes a 37-year-old woman diagnosed with anti-glutamic acid decarboxylase 65 (anti-GAD65) antibody-positive encephalitis-related NORSE. Her seizures were refractory to multiple interventions, including anti-seizure medications, anesthetics, immunotherapies, a ketogenic diet, and electroconvulsive therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!