The phototransduction enzymatic cascade in cones is less understood than in rods, and the zebrafish is an ideal model with which to investigate vertebrate and human vision. Therefore, here, for the first time, the zebrafish green cone photoresponse is characterized also to obtain a firm basis for evaluating how it is modulated by exogenous molecules. To this aim, a powerful method was developed to obtain long-lasting recordings with low access resistance, employing pressure-polished patch pipettes. This method also enabled fast, efficient delivery of molecules via a perfusion system coupled with pulled quartz or plastic perfusion tubes, inserted very close to the enlarged pipette tip. Sub-saturating flashes elicited responses in different cells with similar rising phase kinetics but with very different recovery kinetics, suggesting the existence of physiologically distinct cones having different Ca2+ dynamics. Theoretical considerations demonstrate that the different recovery kinetics can be modelled by simulating changes in the Ca2+-buffering capacity of the outer segment. Importantly, the Ca2+-buffer action preserves the fast response rising phase, when the Ca2+-dependent negative feedback is activated by the light-induced decline in intracellular Ca2+.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4626105PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0141727PLOS

Publication Analysis

Top Keywords

zebrafish green
8
green cone
8
cone photoresponse
8
pressure-polished patch
8
patch pipettes
8
rising phase
8
recovery kinetics
8
characterization zebrafish
4
photoresponse recorded
4
recorded pressure-polished
4

Similar Publications

The goal of this study was to compare the bioaccumulation of the PCB mixture Aroclor 1254 in zebrafish to cardiac and neurologic outcomes. The establishment of effect concentrations (ECs) for cardiac and neurotoxic effects of PCBs in early life stage fish is challenging due to a lack of measured PCB concentrations in test media (e.g.

View Article and Find Full Text PDF

570 nm/770 nm light-excited deep-red fluorescence switch based on dithienylethene derived from BF-curcuminoid.

Chem Sci

December 2024

National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China

Developing dithienylethene (DTE)-based fluorescence switches triggered by biocompatible visible light has always been a long-term goal in view of their potential in numerous biological scenarios. However, their practical availability is severely limited by the short visible light (generally less than 500 nm) required for photocyclization, their inability to achieve red or near-infrared emission, and their short fluorescence lifetimes. Herein, we present a novel DTE derivative featuring a dimethylamine-functionalized BF-curcuminoid moiety (NBDC) by using an "acceptor synergistic conjugation system" strategy.

View Article and Find Full Text PDF

Peroxynitrite (ONOO) and viscosity are critical indicators of lysosome functionality, intimately linked to numerous diseases' pathophysiological processes. Hence, creating reliable analytical techniques to observe fluctuations in lysosomal ONOO and viscosity is highly important. This study presents the development of a novel naphthalimide-based fluorescent probe, Nap-Cy, specifically designed to target lysosomes and simultaneously detect both ONOO and viscosity.

View Article and Find Full Text PDF

Here, we present a protocol for conditional mutagenesis in zebrafish germ cells using Tol2 transposon and a CRISPR-Cas9-based plasmid system. We describe steps for conditional mutagenesis plasmid construction, zebrafish embryo microinjection, and screening for green fluorescence in the heart. This protocol is simple to execute, time efficient, and multifunctional, enabling the disruption of genes in zebrafish germ cells to be conducted with ease.

View Article and Find Full Text PDF

A novel mitochondrial-targeted fluorescent probe for ratiometric imaging of nitric oxide in cells and zebrafish.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China. Electronic address:

Nitric oxide (NO) is a key signaling molecule that regulates energy metabolism, apoptosis, and antioxidant balance within mitochondria. It is closely associated with the development of cardiovascular diseases, neurodegenerative diseases, and cancer. Therefore, developing fluorescent probes capable of accurately detecting NO levels in mitochondria is essential for understanding disease mechanisms and clinical diagnostics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!