Purpose: Endoplasmic reticulum (ER) stress activates inositol requiring enzyme 1 (IRE1), a key regulator of the unfolded protein response. The ER stress activated indicator (ERAI) transgenic mouse expresses a yellow fluorescent GFP variant (Venus) when IRE1 is activated by ER stress. We tested whether ERAI mice would allow for real-time longitudinal studies of ER stress in living mouse eyes.
Methods: We chemically and genetically induced ER stress, and qualitatively and quantitatively studied the Venus signal by fluorescence ophthalmoscopy. We determined retinal cell types that contribute to the signal by immunohistology, and we performed molecular and biochemical assays using whole retinal lysates to assess activity of the IRE1 pathway.
Results: We found qualitative increase in vivo in fluorescence signal at sites of intravitreal tunicamycin injection in ERAI eyes, and quantitative increase in ERAI mice mated to RhoP23H mice expressing ER stress-inducing misfolded rhodopsin protein. As expected, we found that increased Venus signal arose primarily from photoreceptors in RhoP23H/+;ERAI mice. We found increased Xbp1S and XBP1s transcriptional target mRNA levels in RhoP23H/+;ERAI retinas compared to Rho+/+;ERAI retinas, and that Venus signal increased in ERAI retinas as a function of age.
Conclusions: Fluorescence ophthalmoscopy of ERAI mice enables in vivo visualization of retinas undergoing ER stress. ER stress activated indicator mice enable identification of individual retinal cells undergoing ER stress by immunohistochemistry. ER stress activated indicator mice show higher Venus signal at older ages, likely arising from amplification of basal retinal ER stress levels by GFP's inherent stability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4627472 | PMC |
http://dx.doi.org/10.1167/iovs.15-16969 | DOI Listing |
Nutrients
November 2024
School of Medical, Indigenous and Health Science, University of Wollongong, Wollongong, NSW 2522, Australia.
Sirtuins (SIRTs), nicotine adenine dinucleotide (+)-dependent histone deacetylases, have emerged as critical regulators in many signalling pathways involved in a wide range of biological processes. Currently, seven mammalian SIRTs have been characterized and are found across a number of cellular compartments. There has been considerable interest in the role of SIRTs in the brain due to their role in a plethora of metabolic- and age-related diseases, including their involvement in learning and memory function in physiological and pathophysiological conditions.
View Article and Find Full Text PDFCell Death Dis
October 2024
Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy.
Multiple myeloma (MM) is linked to chronic NF-κB activity in myeloma cells, but this activity is generally considered a cell-autonomous property of the cancer cells. The precise extent of NF-κB activation and the contributions of the physical microenvironment and of cell-to-cell communications remain largely unknown. By quantitative immunofluorescence, we found that NF-κB is mildly and heterogeneously activated in a fraction of MM cells in human BMs, while only a minority of MM cells shows a strong activation.
View Article and Find Full Text PDFACS Sens
October 2024
Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., L334, Portland, Oregon 97239, United States.
ADP-ribosylation, the transfer of ADP-ribose (ADPr) from nicotinamide adenine dinucleotide (NAD) groups to proteins, is a conserved post-translational modification (PTM) that occurs most prominently in response to DNA damage. ADP-ribosylation is a dynamic PTM regulated by writers (PARPs), erasers (ADPr hydrolases), and readers (ADPR binders). PARP1 is the primary DNA damage-response writer responsible for adding a polymer of ADPR to proteins (PARylation).
View Article and Find Full Text PDFCancer Res Commun
September 2024
University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California.
Purpose: In preclinical models, glucocorticoid receptor (GR) signaling drives resistance to taxane chemotherapy in multiple solid tumors via upregulation of antiapoptotic pathways. ORIC-101 is a potent and selective GR antagonist that was investigated in combination with taxane chemotherapy as an anticancer regimen preclinically and in a phase 1 clinical trial.
Patients And Methods: The ability of ORIC-101 to reverse taxane resistance was assessed in cell lines and xenograft models, and a phase 1 study (NCT03928314) was conducted in patients with advanced solid tumors to determine the dose, safety, and antitumor activity of ORIC-101 with nab-paclitaxel.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!