Matrix metalloproteinase-20 mediates dental enamel biomineralization by preventing protein occlusion inside apatite crystals.

Biomaterials

University of Southern California, Herman Ostrow School of Dentistry, Division of Biomedical Sciences, Center for Craniofacial Molecular Biology, Los Angeles, CA 90033, USA. Electronic address:

Published: January 2016

Reconstruction of enamel-like materials is a central topic of research in dentistry and material sciences. The importance of precise proteolytic mechanisms in amelogenesis to form a hard tissue with more than 95% mineral content has already been reported. A mutation in the Matrix Metalloproteinase-20 (MMP-20) gene results in hypomineralized enamel that is thin, disorganized and breaks from the underlying dentin. We hypothesized that the absence of MMP-20 during amelogenesis results in the occlusion of amelogenin in the enamel hydroxyapatite crystals. We used spectroscopy and electron microscopy techniques to qualitatively and quantitatively analyze occluded proteins within the isolated enamel crystals from MMP-20 null and Wild type (WT) mice. Our results showed that the isolated enamel crystals of MMP-20 null mice had more organic macromolecules occluded inside them than enamel crystals from the WT. The crystal lattice arrangements of MMP-20 null enamel crystals analyzed by High Resolution Transmission Electron Microscopy (HRTEM) were found to be significantly different from those of the WT. Raman studies indicated that the crystallinity of the MMP-20 null enamel crystals was lower than that of the WT. In conclusion, we present a novel functional mechanism of MMP-20, specifically prevention of unwanted organic material entrapped in the forming enamel crystals, which occurs as the result of precise amelogenin cleavage. MMP-20 action guides the growth morphology of the forming hydroxyapatite crystals and enhances their crystallinity. Elucidating such molecular mechanisms can be applied in the design of novel biomaterials for future clinical applications in dental restoration or repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4654413PMC
http://dx.doi.org/10.1016/j.biomaterials.2015.10.031DOI Listing

Publication Analysis

Top Keywords

enamel crystals
24
mmp-20 null
16
enamel
9
crystals
9
matrix metalloproteinase-20
8
mmp-20
8
hydroxyapatite crystals
8
electron microscopy
8
isolated enamel
8
crystals mmp-20
8

Similar Publications

Tooth enamel maturation requires the removal of proteins from the mineralizing enamel matrix to allow for crystallite growth until full hardness is reached to meet the mechanical needs of mastication. While this process takes up to several years in humans before the tooth erupts, it is greatly accelerated in the faster-developing pigs. Pig teeth erupt with softer, protein-rich enamel that is similar to hypomineralized human enamel but continues to harden quickly after eruption.

View Article and Find Full Text PDF

Nanoparticles Induced Biomimetic Remineralization of Acid-Etched Dentin.

J Dent (Shiraz)

December 2024

Dept. Conservative Dentistry and Endodontics, St.Joseph Dental College, Duggirala, Eluru, Andra Pradesh, India.

Statement Of The Problem: Dentin bonding with etch-and-rinse adhesives involves demineralizing the 5-8µm of the surface dentin to create micro space for resin infiltration. The presence of continuous fluid movement in dentin tubules and positive pulpal pressure prevents complete water replacement by resin monomers. This results in areas of demineralized dentin, which contain collagen fibers without resin infiltration.

View Article and Find Full Text PDF

Dental enamel is subjected to a lifetime of de- and re-mineralization cycles in the oral environment, the cumulative effects of which cause embrittlement with age. However, the understanding of atomic scale mechanisms of dental enamel aging is still at its infancy, particularly regarding where compositional differences occur in the hydroxyapatite nanocrystals and what underlying mechanisms might be responsible. Here, we use atom probe tomography to compare enamel from a young (22 years old) and a senior (56 years old) adult donor tooth.

View Article and Find Full Text PDF

Preferred Orientation of Hydroxyapatite Ceramics Along the -Axis Promotes Osteoblast Differentiation.

Int J Mol Sci

December 2024

Department of Applied Chemistry, School of Science and Technology, Meiji University, Kawasaki 214-8571, Kanagawa, Japan.

Hydroxyapatite (HAp) is similar to the main inorganic components of bone and tooth enamel. Furthermore, it possesses biocompatibility, making it suitable for clinical use in artificial bones. This study aimed to verify whether the preferred orientation of HAp influences osteogenesis.

View Article and Find Full Text PDF

Background: Dental caries remains a significant oral health concern, particularly in young children. With an increasing interest in preventive strategies, pediatric and preventive dentistry research is now more focused on developing newer materials and techniques to coat the primary teeth to prevent the onset of new carious lesions. While traditional preventive measures such as fluoride application and sealants have been effective in reducing caries incidence, there is still a need for innovative approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!