A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Inhibitory effect of post-hemorrhagic shock mesenteric lymph drainage on the HMGB1 and RAGE in mouse kidney. | LitMetric

AI Article Synopsis

  • The study explores how excessive inflammation after severe hemorrhagic shock contributes to acute kidney injury (AKI) and tests if draining mesenteric lymph can help.
  • It utilizes a mouse model of hemorrhagic shock to measure changes in inflammatory markers (HMGB1, RAGE, interleukin levels) in the kidneys before and after treatment with post-hemorrhagic shock mesenteric lymph (PHSML) drainage.
  • Results showed that hemorrhagic shock increased inflammatory markers in the kidneys, but PHSML drainage significantly reduced these levels, indicating it may help mitigate kidney inflammation during AKI.

Article Abstract

Background: Excessively inflammatory response is one of mechanisms that underlie the acute kidney injury (AKI) induced by severe hemorrhagic shock, which could be ameliorated by post-hemorrhagic shock mesenteric lymph (PHSML) blockage. Recent studies demonstrate that high mobility group box 1 (HMGB1) and the receptor for advanced glycation end products (RAGE) are critical mediators of local inflammations. The present study was sought to investigate whether the PHSML drainage inhibits the HMGB1 and RAGE in mouse kidney to ameliorate the renal inflammatory responses.

Methods: A mouse hemorrhagic shock model (40 ± 2 mmHg for 90 min, fluid resuscitation for 30 min) was employed, and the PHMSL drainage was performed at the end of the resuscitation. After 3 h of resuscitation, the expressions of mRNA and protein for the renal HMGB1 and RAGE and the levels of interleukin (IL)-1β and IL-18 were assessed by the real-time reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively.

Results: Hemorrhagic shock elicited significant increases in the mRNA expressions of HMGB1 and RAGE and in the protein expressions of HMGB1, RAGE, IL-1β and IL-18 in kidney. The PHSML drainage abolished these potentiating effects.

Conclusion: The present study demonstrates that PHSML blockade reduces the increased HMGB1 and RAGE and pro-inflammatory factors following hemorrhagic shock, suggesting that the PHSML elicits the inflammatory responses via enhancing the HMGB1 and RAGE production in the kidney.

Download full-text PDF

Source
http://dx.doi.org/10.3109/0886022X.2015.1105026DOI Listing

Publication Analysis

Top Keywords

hmgb1 rage
28
hemorrhagic shock
16
post-hemorrhagic shock
8
shock mesenteric
8
mesenteric lymph
8
hmgb1
8
rage
8
rage mouse
8
mouse kidney
8
phsml drainage
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!