Tracking of Pt(II) complexes is of crucial importance toward understanding Pt interactions with cellular biomolecules. Post-treatment fluorescent labeling of functionalized Pt(II)-based agents using the bioorthogonal Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction has recently been reported as a promising approach. Here we describe an azide-functionalized Pt(II) complex, cis-[Pt(2-azidobutyl)amido-1,3-propanediamine)Cl2] (1), containing the cis geometry and difunctional reactivity of cisplatin, and present a comparative study with its previously described alkyne-functionalized congener. Single-crystal X-ray diffraction reveals a dramatic change in the solid-state arrangement with exchange of the alkyne for an azide moiety wherein 1 is dominated by a pseudo-chain of Pt-Pt dimers and antiparallel alignment of the azide substituents, in comparison with a circular arrangement supported by CH/π(C≡C) interactions in the alkyne version. In vitro studies indicate similar DNA binding and click reactivity of both congeners observed by fluorescent labeling. Interestingly, complex 1 shows in vitro enhanced click reactivity in comparison to a previously reported azide-appended Pt(II) complex. Despite their similar behavior in vitro, preliminary in cellulo HeLa studies indicate a superior imaging potential of azide-functionalized 1. Post-treatment fluorescent labeling of 1 observed by confocal fluorescence microscopy shows nuclear and intense nucleolar localization. These results demonstrate the potential of 1 in different cell line localization studies and for future isolation and purification of Pt-bound targets.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.5b09108DOI Listing

Publication Analysis

Top Keywords

fluorescent labeling
16
ptii complexes
8
post-treatment fluorescent
8
ptii complex
8
studies indicate
8
click reactivity
8
azide alkyne
4
alkyne functionalization
4
ptii
4
functionalization ptii
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!