Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cardiomyocyte progenitor cells play essential roles in early heart development, which requires highly controlled cellular organization. microRNAs (miRs) are involved in various cell behaviors by post-transcriptional regulation of target genes. However, the roles of miRNAs in human cardiomyocyte progenitor cells (hCMPCs) remain to be elucidated. Our previous study showed that miR-134 was significantly downregulated in heart tissue suffering from congenital heart disease, underlying the potential role of miR-134 in cardiogenesis. In the present work, we showed that the upregulation of miR-134 reduced the proliferation of hCMPCs, as determined by EdU assay and Ki-67 immunostaining, while the inhibition of miR-134 exhibited an opposite effect. Both up- and downregulation of miR-134 expression altered the transcriptional level of cell-cycle genes. We identified Meis2 as the target of miR-134 in the regulation of hCMPC proliferation through bioinformatic prediction, luciferase reporter assay and western blot. The over-expression of Meis2 mitigated the effect of miR-134 on hCMPC proliferation. Moreover, miR-134 did not change the degree of hCMPC differentiation into cardiomyocytes in our model, suggesting that miR-134 is not required in this process. These findings reveal an essential role for miR-134 in cardiomyocyte progenitor cell biology and provide new insights into the physiology and pathology of cardiogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4632798 | PMC |
http://dx.doi.org/10.3390/ijms161025199 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!