OBJECTIVE To investigate the influence of 4 biomechanical parameters on canine cranial cruciate ligament (CrCL)-intact and -deficient stifle joints. SAMPLE Data for computer simulations of a healthy 5-year-old 33-kg neutered male Golden Retriever in a previously developed 3-D rigid body pelvic limb computer model simulating the stance phase during walking. PROCEDURES Canine stifle joint biomechanics were assessed when biomechanical parameters (CrCL stiffness, CrCL prestrain, body weight, and stifle joint friction coefficient) were altered in the pelvic limb computer simulation model. Parameters were incrementally altered from baseline values to determine the influence on stifle joint outcome measures (ligament loads, relative tibial translation, and relative tibial rotation). Stifle joint outcome measures were compared between CrCL-intact and -deficient stifle joints for the range of parameters evaluated. RESULTS In the CrCL-intact stifle joint, ligament loads were most sensitive to CrCL prestrain. In the CrCL-deficient stifle joint, ligament loads were most sensitive to body weight. Relative tibial translation was most sensitive to body weight, whereas relative tibial rotation was most sensitive to CrCL prestrain. CONCLUSIONS AND CLINICAL RELEVANCE In this study, computer model sensitivity analyses predicted that CrCL prestrain and body weight influenced stifle joint biomechanics. Cranial cruciate ligament laxity may influence the likelihood of CrCL deficiency. Body weight could play an important role in management of dogs with a CrCL-deficient stifle joint.

Download full-text PDF

Source
http://dx.doi.org/10.2460/ajvr.76.11.952DOI Listing

Publication Analysis

Top Keywords

stifle joint
32
body weight
20
crcl prestrain
16
relative tibial
16
biomechanical parameters
12
cranial cruciate
12
stifle joints
12
ligament loads
12
stifle
11
influence biomechanical
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!