Homocysteine levels in women with a history of gestational diabetes mellitus.

Diabetol Metab Syndr

Department of Diabetology and Internal Medicine, Pomeranian Medical University in Szczecin, Siedlecka 2 Str, 72-010 Police, Poland.

Published: October 2015

Background: Previous gestational diabetes (pGDM) is a risk factor of type 2 diabetes, hypertension and cardiovascular diseases. Homocysteine is one of markers of cardiovascular risk. The aim of this study was to assess the homocysteine levels in women with pGDM and to evaluate its relationship with current carbohydrate metabolism and nourishment status.

Methods: The study group comprised 199 women at 7.8 ± 1.0 years after pGDM and 50 control women in whom pGDM was excluded. The analyzed parameters: BMI, WHR, body composition (Tanita SC-330S analyzer), glucose and insulin levels in oral glucose tolerance test (OGTT), insulin resistance index (HOMA-IR), HbA1c, lipid profile, homocysteine, creatinine and creatinine clearance. The Mann-Whitney test and Chi-squared test were used for comparison of continuous and nominal variables, respectively. Correlations between continuous variables in each group were analyzed using Spearman's rank correlation coefficient (Rs). A logarithmic transformation was applied for variables with non-normal distribution.

Results: There were no differences between the pGDM women and controls in terms of age, number of childbirths, time from indexed pregnancy, pre-pregnancy BMI, or current anthropometric parameters. In pGDM women HbA1c and all glucose levels in OGTT were significantly higher, but still within the normal range. No significant differences were found in homocysteine levels, HOMA-IR, blood lipids, creatinine and creatinine clearance. Homocysteine levels did not differ significantly in subgroups categorized according to the current OGTT results or BMI. Carbohydrate metabolism disorders, overweight and obesity were associated with higher creatinine clearance. Positive correlation between homocysteine and creatinine (r = 0.21, p < 0.004), and a negative correlation with creatinine clearance (r = -0.16, p < 0.03) were found.

Conclusions: In women with pGDM, homocysteine is not a marker of glucose tolerance disturbances and cardiovascular risk. Increased glomerular filtration rate, observed in more severe disorders of carbohydrate metabolism and greater BMI, may temporarily protect against an increase of proatherogenic homocysteine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4623911PMC
http://dx.doi.org/10.1186/s13098-015-0088-2DOI Listing

Publication Analysis

Top Keywords

homocysteine levels
16
creatinine clearance
12
levels women
8
gestational diabetes
8
women pgdm
8
carbohydrate metabolism
8
homocysteine creatinine
8
creatinine creatinine
8
pgdm women
8
homocysteine
7

Similar Publications

Objective: This study aims to identify whether the development of insulin resistance (IR) induced by high selenium (Se) is related to serine deficiency via the inhibition of the de novo serine synthesis pathway (SSP) by the administrations of 3-phosphoglycerate dehydrogenase (PHGDH) inhibitor (NCT503) or exogenous serine in mice.

Method: forty-eight male C57BL/6J mice were randomly divided into four groups: adequate-Se (0.1 mgSe/kg), high-Se (0.

View Article and Find Full Text PDF

Vitamin Metabolism and Its Dependency on Genetic Variations Among Healthy Adults: A Systematic Review for Precision Nutrition Strategies.

Nutrients

January 2025

University Centre for Prevention and Sports Medicine, Department of Orthopaedics, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland.

Background/objectives: In recent years, there has been a growing interest in precision nutrition and its potential for disease prevention. Differences in individual responses to diet, especially among populations of different ancestry, have underlined the importance of understanding the effects of genetic variations on nutrient intake (nutrigenomics). Since humans generally cannot synthesize essential vitamins, the maintenance of healthy bodily functions depends on dietary vitamin intake.

View Article and Find Full Text PDF

Background/objectives: Chronic gut dysbiosis due to a high-fat diet (HFD) instigates cardiac remodeling and heart failure with preserved ejection fraction (HFpEF), in particular, kidney/volume-dependent HFpEF. Studies report that although mitochondrial ATP citrate lyase (ACLY) supports cardiac function, it decreases more in human HFpEF than HFrEF. Interestingly, ACLY synthesizes lipids and creates hyperlipidemia.

View Article and Find Full Text PDF

Homocysteine Metabolites, Endothelial Dysfunction, and Cardiovascular Disease.

Int J Mol Sci

January 2025

Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland.

Atherosclerosis is accompanied by inflammation that underlies cardiovascular disease (CVD) and its vascular manifestations, including acute stroke, myocardial infarction, and peripheral artery disease, the leading causes of morbidity/mortality worldwide. The monolayer of endothelial cells formed on the luminal surface of arteries and veins regulates vascular tone and permeability, which supports vascular homeostasis. Endothelial dysfunction, the first step in the development of atherosclerosis, is caused by mechanical and biochemical factors that disrupt vascular homeostasis and induce inflammation.

View Article and Find Full Text PDF

To investigate the impact of age on the metabolomic profile of loggerhead sea turtles (), this study analyzed 100 plasma samples of individuals across two age groups-50 post-hatchlings and 50 juveniles-from various locations along the Mediterranean coastline. Both targeted and untargeted metabolomic analyses were performed on the samples. Our results demonstrated a significant age-related effect on the metabolomic profiles in both analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!