Csf2 and Ptgs2 Epigenetic Dysregulation in Diabetes-prone Bicongenic B6.NODC11bxC1tb Mice.

Genet Epigenet

Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA. ; Sanford-Burnham Medical Research Institute, Diabetes and Obesity Center, Lake Nona-Orlando, FL, USA. ; Florida Hospital Cancer Institute, Orlando, FL, USA.

Published: October 2015

AI Article Synopsis

  • The study examines how STAT5, a signaling protein, misbinds to genes involved in inflammation in monocytes from Type 1 diabetic humans.
  • Researchers used genetically modified mice (B6.NOD C11bxC1tb) to model these changes, demonstrating that specific genetic regions combined with STAT5 binding lead to altered expression of inflammatory genes CSF2 and PTGS2.
  • These modified mice showed symptoms of diabetes, such as high blood sugar and pancreatic damage, suggesting that the gene expression changes in immune cells may increase diabetes risk even in mice that are not typically prone to autoimmune diseases.

Article Abstract

In Type 1 diabetic (T1D) human monocytes, STAT5 aberrantly binds to epigenetic regulatory sites of two proinflammatory genes, CSF2 (encoding granulocyte-macrophage colony-stimulating factor) and PTGS2 (encoding prostaglandin synthase 2/cyclooxygenase 2). Bicongenic B6.NOD C11bxC1tb mice re-create this phenotype of T1D monocytes with only two nonobese diabetic (NOD) Idd subloci (130.8 Mb-149.7 Mb, of Idd5 on Chr 1 and 32.08-53.85 Mb of Idd4.3 on Chr11) on C57BL/6 genetic background. These two Idd loci interact through STAT5 binding at upstream regulatory regions affecting Csf2 (Chr 11) and Ptgs2 (Chr 1) expression. B6.NODC11bxC1tb mice exhibited hyperglycemia and immune destruction of pancreatic islets between 8 and 30 weeks of age, with 12%-22% penetrance. Thus, B6.NODC11bxC1tb mice embody NOD epigenetic dysregulation of gene expression in myeloid cells, and this defect appears to be sufficient to impart genetic susceptibility to diabetes in an otherwise genetically nonautoimmune mouse.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4603573PMC
http://dx.doi.org/10.4137/GEG.S29696DOI Listing

Publication Analysis

Top Keywords

b6nodc11bxc1tb mice
12
epigenetic dysregulation
8
csf2 ptgs2
4
ptgs2 epigenetic
4
dysregulation diabetes-prone
4
diabetes-prone bicongenic
4
bicongenic b6nodc11bxc1tb
4
mice
4
mice type
4
type diabetic
4

Similar Publications

Pulmonary hypertension (PH) increases the mortality of preterm infants with bronchopulmonary dysplasia (BPD). There are no curative therapies for this disease. Lung endothelial carnitine palmitoyltransferase 1a (Cpt1a), the rate-limiting enzyme of the carnitine shuttle system, is reduced in a rodent model of BPD.

View Article and Find Full Text PDF

Backgrounds And Aims: CD8+T cells are crucially associated with the fight against hepatitis B virus (HBV) infection. CD161 has been shown to express remarkably on HCV-specific CD8+T cells. However, the accurate function of CD161+CD8+T cells in HBV immunity or pathogenesis remains undetermined.

View Article and Find Full Text PDF

Cadmium (Cd) is a toxic heavy metal which induces vascular disorders. Previous studies suggest that Cd in the bloodstream affects vascular endothelial cells (ECs), potentially contributing to vascular-related diseases. However, the molecular mechanisms of effects of Cd on ECs remain poorly understood.

View Article and Find Full Text PDF

We previously documented successful resolution of skeletal and dental disease in the infantile and late-onset murine models of hypophosphatasia (HPP), with a single injection of an adeno-associated serotype 8 vector encoding mineral-targeted TNAP (AAV8-TNAP-D10). Here, we conducted dosing studies in both HPP mouse models. A single escalating dose from 4x108 up to 4x1010 (vg/b) was intramuscularly injected into 4-day-old Alpl-/- mice (an infantile HPP model) and a single dose from 4x106 up to 4x109 (vg/b) was administered to 8-week-old AlplPrx1/Prx1 mice (a late-onset HPP model).

View Article and Find Full Text PDF

Abdominal aortic aneurysm (AAA) is a severe cardiovascular disease (CVD) that is partly attributable to endothelial dysfunction, inflammatory response, and angiogenesis. G protein-coupled receptor 4 (GPR4), a proton-sensitive G protein-coupled receptor that is abundantly expressed in vascular endothelial cells, has been associated with numerous physiological functions. Nevertheless, its potential involvement in the development of AAA remains unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!