KH domain protein RCF3 is a tissue-biased regulator of the plant miRNA biogenesis cofactor HYL1.

Proc Natl Acad Sci U S A

Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany; Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, 3000 Santa Fe, Argentina

Published: November 2015

The biogenesis of microRNAs (miRNAs), which regulate mRNA abundance through posttranscriptional silencing, comprises multiple well-orchestrated processing steps. We have identified the Arabidopsis thaliana K homology (KH) domain protein REGULATOR OF CBF GENE EXPRESSION 3 (RCF3) as a cofactor affecting miRNA biogenesis in specific plant tissues. MiRNA and miRNA-target levels were reduced in apex-enriched samples of rcf3 mutants, but not in other tissues. Mechanistically, RCF3 affects miRNA biogenesis through nuclear interactions with the phosphatases C-TERMINAL DOMAIN PHOSPHATASE-LIKE1 and 2 (CPL1 and CPL2). These interactions are essential to regulate the phosphorylation status, and thus the activity, of the double-stranded RNA binding protein and DICER-LIKE1 (DCL1) cofactor HYPONASTIC LEAVES1 (HYL1).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4653147PMC
http://dx.doi.org/10.1073/pnas.1512865112DOI Listing

Publication Analysis

Top Keywords

mirna biogenesis
12
domain protein
8
rcf3
4
protein rcf3
4
rcf3 tissue-biased
4
tissue-biased regulator
4
regulator plant
4
mirna
4
plant mirna
4
biogenesis
4

Similar Publications

A microRNA with a non-canonical precursor structure harbours an intron in between its miRNA-5p and miRNA-3p relevant for its biogenesis, is conserved across Solanaceae, and targets the mRNA of low phosphate root. Hundreds of miRNAs have been identified in plants and great advances have been accomplished in the understanding of plant miRNA biogenesis, mechanisms and functions. Still, many miRNAs, particularly those with less conventional features, remain to be discovered.

View Article and Find Full Text PDF

m6A modified pre-miR-503-5p contributes to myogenic differentiation through the activation of mTOR pathway.

Int J Biol Macromol

January 2025

Sanya Research Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572025, China; Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:

The post-transcriptional regulation of epigenetic modification is a hot topic in skeletal muscle development research. Both m6A modifications and miRNAs have been well-established as crucial regulators in skeletal muscle development. However, the interacting regulatory mechanisms between m6A modifications and miRNAs in skeletal muscle development remain unclear.

View Article and Find Full Text PDF

Oncolytic alphavirus-induced extracellular vesicles counteract the immunosuppressive effect of melanoma-derived extracellular vesicles.

Sci Rep

January 2025

Center for Translational Research in Oncology (LIM/24), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, CEP 01246-000, Brazil.

Extracellular vesicles (EVs)-mediated communication by cancer cells contributes towards the pro-tumoral reprogramming of the tumor microenvironment. Viral infection has been observed to alter the biogenesis and cargo of EVs secreted from host cells in the context of infectious biology. However, the impact of oncolytic viruses on the cargo and function of EVs released by cancer cells remains unknown.

View Article and Find Full Text PDF

miRNA-target complementarity in cnidarians resembles its counterpart in plants.

EMBO Rep

January 2025

Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.

microRNAs (miRNAs) are important post-transcriptional regulators that activate silencing mechanisms by annealing to mRNA transcripts. While plant miRNAs match their targets with nearly-full complementarity leading to mRNA cleavage, miRNAs in most animals require only a short sequence called 'seed' to inhibit target translation. Recent findings showed that miRNAs in cnidarians, early-branching metazoans, act similarly to plant miRNAs, by exhibiting full complementarity and target cleavage; however, it remained unknown if seed-based regulation was possible in cnidarians.

View Article and Find Full Text PDF

Blood-derived APLP1 extracellular vesicles are potential biomarkers for the early diagnosis of brain diseases.

Sci Adv

January 2025

Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea.

Article Synopsis
  • Early detection of neurodegenerative diseases relies on identifying brain-specific biomolecules in blood, and this study explores amyloid precursor-like protein 1 (APLP1) as a new biomarker found in extracellular vesicles (EVs).
  • The research confirms that APLP1 EVs in human blood come from the brain, supported by distinct small RNA patterns and the expression of miRNA targets that are highly present in brain tissue.
  • Validation using special mouse models (Thy-1 GFP M line) alongside data analysis highlights APLP1 EVs' potential as both diagnostic markers and key players in advancing neurodegenerative disease diagnosis.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!