Acetylation is a dynamic post-translational modification that is attached to protein substrates by lysine acetyltransferases (KATs) and removed by lysine deacetylases (KDACs). While these enzymes are best characterized as histone modifiers and regulators of gene transcription, work in a number of systems highlights that acetylation is a pervasive modification and suggests a broad scope for KAT and KDAC functions in the cell. As we move beyond generating lists of acetylated proteins, the acetylation field is in dire need of robust tools to connect acetylation and deacetylation machineries to their respective substrates and to dissect the function of individual sites. The Saccharomyces cerevisiae model system provides such a toolkit in the context of both tried and true genetic techniques and cutting-edge proteomic and cell imaging methods. Here, we review these methods in the context of their contributions to acetylation research thus far and suggest strategies for addressing lingering questions in the field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4803063 | PMC |
http://dx.doi.org/10.1093/bfgp/elv045 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!