Exosomes are nanoscale vesicles that mediate intercellular communication. Cellular exosome uptake mechanisms are not well defined partly due to the lack of specific inhibitors of this complex cellular process. Exosome uptake depends on cholesterol-rich membrane microdomains called lipid rafts, and can be blocked by non-specific depletion of plasma membrane cholesterol. Scavenger receptor type B-1 (SR-B1), found in lipid rafts, is a receptor for cholesterol-rich high-density lipoproteins (HDL). We hypothesized that a synthetic nanoparticle mimic of HDL (HDL NP) that binds SR-B1 and removes cholesterol through this receptor would inhibit cellular exosome uptake. In cell models, our data show that HDL NPs bind SR-B1, activate cholesterol efflux, and attenuate the influx of esterified cholesterol. As a result, HDL NP treatment results in decreased dynamics and clustering of SR-B1 contained in lipid rafts and potently inhibits cellular exosome uptake. Thus, SR-B1 and targeted HDL NPs provide a fundamental advance in studying cholesterol-dependent cellular uptake mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4625174 | PMC |
http://dx.doi.org/10.1038/srep15724 | DOI Listing |
J Transl Med
January 2025
The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
Background: Bone marrow mesenchymal stem cells (BMSCs) are a crucial component of the tumor microenvironment (TME), with hypoxic conditions promoting their migration to tumors. Exosomes play a vital role in cell-to-cell communication within the TME. Hypoxic TME have a great impact on the release, uptake and biofunctions of exosomes.
View Article and Find Full Text PDFBackground: Vascular endothelial cell-derived exosomes are thought to mediate disease progression by regulating macrophage polarization. However, its mechanism in diabetes mellitus (DM)-related atherosclerosis (AS) progress is unclear.
Methods: High-glucose (HG) and oxLDL were used to induce human cardiac microvascular endothelial cells (HCMECs) to mimic DM-related AS model.
Bioengineering (Basel)
November 2024
Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
Exosomes are extracellular nanovesicles secreted by cells that efficiently deliver therapeutic cargo for cancer treatment. However, because exosomes are present in low quantities and have limited target specificity, internal and external stress stimulation has been studied to increase exosome efficiency. Inspired by these studies, the uptake efficiency of cobalt chloride-induced hypoxic cancer cell-secreted exosomes was evaluated.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, 200032, PR China.
Colloids Surf B Biointerfaces
December 2024
Department of Periodontology, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China. Electronic address:
Objectives: Periodontitis is an inflammatory and destructive disease caused by dental plaque, which can result in the immune microenvironment disorders and loss of periodontal support tissue. In order to promote the restoration of local microenvironment stability, a functional biomaterial Gelatin methacryloyl @MP196/exos based on characteristics of disease occurrence is designed.
Methods: Transmission electron microscopy, nanosight particle tracking analysis and western blot analysis were applied to prove the presence of exos in GelMA@MP196/exos.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!