A Universal and Robust Integrated Platform for the Scalable Production of Human Cardiomyocytes From Pluripotent Stem Cells.

Stem Cells Transl Med

Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran Department of Developmental Biology, University of Science and Culture, Academic Center for Education, Culture and Research, Tehran, Iran

Published: December 2015

Unlabelled: Recent advances in the generation of cardiomyocytes (CMs) from human pluripotent stem cells (hPSCs), in conjunction with the promising outcomes from preclinical and clinical studies, have raised new hopes for cardiac cell therapy. We report the development of a scalable, robust, and integrated differentiation platform for large-scale production of hPSC-CM aggregates in a stirred suspension bioreactor as a single-unit operation. Precise modulation of the differentiation process by small molecule activation of WNT signaling, followed by inactivation of transforming growth factor-β and WNT signaling and activation of sonic hedgehog signaling in hPSCs as size-controlled aggregates led to the generation of approximately 100% beating CM spheroids containing virtually pure (∼90%) CMs in 10 days. Moreover, the developed differentiation strategy was universal, as demonstrated by testing multiple hPSC lines (5 human embryonic stem cell and 4 human inducible PSC lines) without cell sorting or selection. The produced hPSC-CMs successfully expressed canonical lineage-specific markers and showed high functionality, as demonstrated by microelectrode array and electrophysiology tests. This robust and universal platform could become a valuable tool for the mass production of functional hPSC-CMs as a prerequisite for realizing their promising potential for therapeutic and industrial applications, including drug discovery and toxicity assays.

Significance: Recent advances in the generation of cardiomyocytes (CMs) from human pluripotent stem cells (hPSCs) and the development of novel cell therapy strategies using hPSC-CMs (e.g., cardiac patches) in conjunction with promising preclinical and clinical studies, have raised new hopes for patients with end-stage cardiovascular disease, which remains the leading cause of morbidity and mortality globally. In this study, a simplified, scalable, robust, and integrated differentiation platform was developed to generate clinical grade hPSC-CMs as cell aggregates under chemically defined culture conditions. This approach resulted in approximately 100% beating CM spheroids with virtually pure (∼90%) functional cardiomyocytes in 10 days from multiple hPSC lines. This universal and robust bioprocessing platform can provide sufficient numbers of hPSC-CMs for companies developing regenerative medicine technologies to rescue, replace, and help repair damaged heart tissues and for pharmaceutical companies developing advanced biologics and drugs for regeneration of lost heart tissue using high-throughput technologies. It is believed that this technology can expedite clinical progress in these areas to achieve a meaningful impact on improving clinical outcomes, cost of care, and quality of life for those patients disabled and experiencing heart disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4675501PMC
http://dx.doi.org/10.5966/sctm.2014-0275DOI Listing

Publication Analysis

Top Keywords

robust integrated
12
pluripotent stem
12
stem cells
12
universal robust
8
advances generation
8
generation cardiomyocytes
8
cardiomyocytes cms
8
cms human
8
human pluripotent
8
cells hpscs
8

Similar Publications

Background: The association between social media usage and the risk of depressive symptoms has attracted increasing attention. WeChat is a popular social media software in China. The impact of using WeChat and posting WeChat moments on the risk of developing depressive symptoms among community-based middle-aged and older adults in China is unknown.

View Article and Find Full Text PDF

Integrating machine learning potentials (MLPs) with quantum mechanical/molecular mechanical (QM/MM) free energy simulations has emerged as a powerful approach for studying enzymatic catalysis. However, its practical application has been hindered by the time-consuming process of generating the necessary training, validation, and test data for MLP models through QM/MM simulations. Furthermore, the entire process needs to be repeated for each specific enzyme system and reaction.

View Article and Find Full Text PDF

Background: This mixed methods study identified needed refinements to a telehealth-delivered cultural and linguistic adaptation of Meaning-Centered Psychotherapy for Chinese patients with advanced cancer (MCP-Ch) to enhance acceptability, comprehensibility, and implementation of the intervention in usual care settings, guided by the Ecological Validity Model (EVM) and the Practical, Robust Implementation and Sustainability Model (PRISM).

Methods: Fifteen purposively sampled mental health professionals who work with Chinese cancer patients completed surveys providing Likert-scale ratings on acceptability and comprehensibility of MCP-Ch content (guided by the EVM) and pre-implementation factors (guided by PRISM), followed by semi-structured interviews. Survey data were descriptively summarized and linked to qualitative interview data.

View Article and Find Full Text PDF

Genome-Guided Identification and Characterisation of Broad-Spectrum Antimicrobial Compounds of Bacillus velezensis Strain PD9 Isolated from Stingless Bee Propolis.

Probiotics Antimicrob Proteins

January 2025

Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.

The emergence of multidrug-resistant pathogens presents a significant global health challenge, which is primarily fuelled by overuse and misuse of antibiotics. Bacteria-derived antimicrobial metabolites offer a promising alternative strategy for combating antimicrobial resistance issues. Bacillus velezensis PD9 (BvPD9), isolated from stingless bee propolis, has been reported to have antibacterial activities against methicillin-resistant Staphylococcus aureus (MRSA).

View Article and Find Full Text PDF

Advancements in bioinformatic tools and breakthroughs in high throughput RNA sequencing have unveiled the potential role of non-coding RNAs in influencing the overall expression of disease-responsive genes. Owing to the increasing need to develop resilient crop varieties against environmental constraints, our study explores the functional relationship of various non-coding RNAs in wheat during leaf rust pathogenesis. MicroRNAs (miRNAs) and circular RNAs (circRNAs) were retrieved from SAGE and RNA-Seq libraries, respectively, in the susceptible (HD2329) and resistant (HD2329 + Lr28) wheat Near-Isogenic Lines (NILs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!