Endosomal sorting complex required for transport (ESCRT) proteins are involved in a number of cellular processes, such as endosomal protein sorting, HIV budding, cytokinesis, plasma membrane repair, and resealing of the nuclear envelope during mitosis. Here we explored the function of a noncanonical member of the ESCRT-III protein family, the Saccharomyces cerevisiae ortholog of human CHMP7. Very little is known about this protein. In silico analysis predicted that Chm7 (yeast ORF YJL049w) is a fusion of an ESCRT-II and ESCRT-III-like domain, which would suggest a role in endosomal protein sorting. However, our data argue against a role of Chm7 in endosomal protein sorting. The turnover of the endocytic cargo protein Ste6 and the vacuolar protein sorting of carboxypeptidase S (CPS) were not affected by CHM7 deletion, and Chm7 also responded very differently to a loss in Vps4 function compared to a canonical ESCRT-III protein. Our data indicate that the Chm7 function could be connected to the endoplasmic reticulum (ER). In line with a function at the ER, we observed a strong negative genetic interaction between the deletion of a gene function (APQ12) implicated in nuclear pore complex assembly and messenger RNA (mRNA) export and the CHM7 deletion. The patterns of genetic interactions between the APQ12 deletion and deletions of ESCRT-III genes, two-hybrid interactions, and the specific localization of mCherry fusion proteins are consistent with the notion that Chm7 performs a novel function at the ER as part of an alternative ESCRT-III complex.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4676514 | PMC |
http://dx.doi.org/10.1534/genetics.115.178939 | DOI Listing |
Chem Asian J
January 2025
Indian Institute of Science, Inorganic and Physical Chemistry, Indian Institute of Science, 560 012, Bangalore, INDIA.
Intracellular delivery of proteins is an important barrier in the development of strategies to deliver functional proteins and protein therapeutics into the cells to realize their full potential in biotechnology, biomedicine, cell-based therapies, and gene editing protein systems. Most of the intracellular protein delivery strategies involve the conjugation of cell penetrating peptides to enable and enhance the permeability of plasma membrane of mammalian cells to allow proteins to enter cytosol. Small molecules conjugations such as (p-methylphenyl) glycine, pyrenebutyrate and cysteines are used for the same purpose.
View Article and Find Full Text PDFPurposeThe concept of dual-state hyper-energy metabolism characterized by elevated glycolysis and OxPhos has gained considerable attention during tumor growth and metastasis in different malignancies. However, it is largely unknown how such metabolic phenotypes influence the radiation response in aggressive cancers. Therefore, the present study aimed to investigate the impact of hyper-energy metabolism (increased glycolysis and OxPhos) on the radiation response of a human glioma cell line.
View Article and Find Full Text PDFACS Appl Nano Mater
June 2024
Department of Chemistry, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio 44106, United States.
DNA nanotechnology has made initial progress toward developing gene-encoded DNA origami nanoparticles (NPs) that display potential utility for future gene therapy applications. However, due to the challenges involved with gene delivery into cells including transport through the membrane, intracellular targeting, and inherent expression of nucleases along with interference from other active proteins, it can be difficult to more directly study the effect of DNA NP design on subsequent gene expression. In this work, we demonstrate an approach for studying the expression of gene-encoding DNA origami NPs without the use of cells.
View Article and Find Full Text PDFFront Immunol
January 2025
Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore.
Introduction: Collagen is essential for maintaining lung structure and function and its remodeling has been associated with respiratory diseases including chronic obstructive pulmonary disease (COPD). However, the cellular mechanisms driving collagen remodeling and the functional implications of this process in the pathophysiology of pulmonary diseases remain poorly understood.
Methods: To address this question, we employed ; mice with specific depletion of Lyve-1 macrophages and assessed the content, types and organization of collagen in lung compartments at steady state and after chronic exposure to cigarette smoke (CS).
The GPCR-like protein Smoothened (Smo) plays a pivotal role in the Hedgehog (Hh) pathway. To initiate Hh signaling, active Smo binds to and inhibits the catalytic subunit of PKA in the primary cilium, a process facilitated by G protein-coupled receptor kinase 2 (Grk2). However, the precise regulatory mechanisms underlying this process, as well as the events preceding and following Smo activation, remain poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!