We report a joint experimental and theoretical investigation of a quadrupolar D-π-A(+) -π-D system, the electron donors being diphenylamino groups and the electron acceptor being a methylpyridinium, in comparison with the dipolar D-π-A(+) system. The emission spectra of the two compounds overlap in all the investigated solvents. This finding could be rationalized by TD-DFT calculations: the LUMO-HOMO molecular orbitals involved in the emission transition are localized on the same branch of the quadrupolar structure that becomes the fluorescent portion, corresponding to that of the single-arm compound. Excited-state symmetry breaking has been rarely observed for quadrupolar systems showing negative solvatochromism and is here surprisingly revealed, even in low polarity solvents. Femtosecond transient absorption measurements revealed that an efficient photoinduced intramolecular charge transfer takes place in the quadrupolar chromophore, more efficient than in its dipolar analogue. This result is promising in view of the application of these compounds as novel two-photon absorbing materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.201500784 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!