Purpose: To develop a free-breathing variable flip angle (VFA) balanced steady-state free precession (bSSFP) cardiac cine imaging technique with reduced specific absorption rate (SAR) at 3 Tesla.

Methods: Free-breathing VFA (FB-VFA) images in the short-axis and four-chamber views were acquired using an optimal VFA scheme, then compared with conventional breath-hold constant flip angle (BH-CFA) acquisitions. Two cardiac MRI experts used a 5-point scale to score images from healthy subjects (N = 10). The left ventricular ejection fraction, end diastolic volume (LVEDV), end systolic volume, stroke volume (LVSV), and end diastolic myocardial mass (LVEDM) were determined by manual contour analysis for BH-CFA and FB-VFA. A pilot evaluation of FB-VFA was performed in one patient with Duchenne muscular dystrophy.

Results: FB-VFA SAR was 25% lower than BH-CFA with similar blood-myocardium contrast. The qualitative FB-VFA score was lower than the BH-CFA for the short-axis (3.1 ± 0.5 versus 4.3 ± 0.8; P < 0.05) and the four-chamber view (3.4 ± 0.4 versus 4.6 ± 0.6; P < 0.05). The LVEDV and the LVSV were 5% and 12% larger (P < 0.05) for FB-VFA compared with BH-CFA. There was no difference in LVEDM.

Conclusion: FB-VFA bSSFP cardiac cine imaging decreased the SAR at 3T with image quality sufficient to perform cardiac functional analysis. Magn Reson Med 76:1210-1216, 2016. © 2015 Wiley Periodicals, Inc.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4848168PMC
http://dx.doi.org/10.1002/mrm.26011DOI Listing

Publication Analysis

Top Keywords

flip angle
12
cardiac cine
12
cine imaging
12
free-breathing variable
8
variable flip
8
bssfp cardiac
8
lower bh-cfa
8
versus 005
8
fb-vfa
7
cardiac
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!