Proinflammatory cytokines affect several cell functions via receptor-mediated processes. In the kidney, functions of transporters and ion channels along the nephron are also affected by some cytokines. Among these, alteration of activity of potassium ion (K(+)) channels induces changes in transepithelial transport of solutes and water in the kidney, since K(+) channels in tubule cells are indispensable for formation of membrane potential which serves as a driving force for the transepithelial transport. Altered K(+) channel activity may be involved in renal cell dysfunction during inflammation. Although little information was available regarding the effects of proinflammatory cytokines on renal K(+) channels, reports have emerged during the last decade. In human proximal tubule cells, interferon-γ showed a time-dependent biphasic effect on a 40 pS K(+) channel, that is, delayed suppression and acute stimulation, and interleukin-1β acutely suppressed the channel activity. Transforming growth factor-β1 activated KCa3.1 K(+) channel in immortalized human proximal tubule cells, which would be involved in the pathogenesis of renal fibrosis. This review discusses the effects of proinflammatory cytokines on renal K(+) channels and the causal relationship between the cytokine-induced changes in K(+) channel activity and renal dysfunction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4609835 | PMC |
http://dx.doi.org/10.1155/2015/362768 | DOI Listing |
Chemosphere
January 2025
Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium.
ZnO and TiO nanoparticles (NPs) are widely employed for their antibacterial properties, but their potential environmental impact is raising concerns. This study aimed to assess their single and combined effects at environmentally relevant concentrations (210 μg L) on rainbow trout (Oncorhynchus mykiss) gills microbiota and immune functions. 16S rRNA gene sequencing performed after 5 and 28 days of exposure suggests that TiO NPs had a more immediate impact on bacterial diversity, while prolonged exposure to the mixture altered community composition.
View Article and Find Full Text PDFCell Biosci
January 2025
School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong S.A.R., China.
Background: Pathogenic or null mutations in WRN helicase is a cause of premature aging disease Werner syndrome (WS). WRN is known to protect somatic cells including adult stem cells from premature senescence. Loss of WRN in mesenchymal stem cells (MSCs) not only drives the cells to premature senescence but also significantly impairs the function of the stem cells in tissue repair or regeneration.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
There are limited studies on the improvement of leaky gut with minor inflammation associated with various diseases. To explore the therapeutic potential of Lactiplantibacillus plantarum 22 A-3, a member of the Lactobacillus species, in addressing a leaky gut. Lactiplantibacillus plantarum 22 A-3 was administered to a leaky gut mice model with low dextran sulfate sodium concentrations.
View Article and Find Full Text PDFCell Death Dis
January 2025
NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, 110004, China.
Metabolic rewiring underlies effective macrophages defense to respond disease microenvironment. However, the underlying mechanisms driving metabolic rewiring to enhance macrophage effector functions remain unclear. Here, we demonstrated that the metabolic reprogramming in inflammatory macrophages depended on the acetylation of CLYBL, a citramalyl-CoA lyase, at lysine 154 (K154), and blocking CLYBL-K154 acetylation restricted the release of pro-inflammatory factors.
View Article and Find Full Text PDFCell Death Dis
January 2025
Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
The involvement of B lymphocytes in the pathogenesis of rheumatoid arthritis (RA) is well-established, with their early and aberrant activation being a crucial factor. However, the mechanisms underlying this abnormal activation in RA remain incompletely understood. In this study, we identified a significant reduction in MAPK4 expression in both RA patients and collagen-induced arthritis (CIA) mouse models, which correlates with disrupted B cell activation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!