Tunable Microfibers Suppress Fibrotic Encapsulation via Inhibition of TGFβ Signaling.

Tissue Eng Part A

1 UCSF Department of Bioengineering and Therapeutic Sciences, San Francisco , California.

Published: January 2016

Fibrotic encapsulation limits the efficacy and lifetime of implantable biomedical devices. Microtopography has shown promise in the regulation of myofibroblast differentiation, a key driver of fibrotic encapsulation. However, existing studies have not systematically isolated the requisite geometric parameters for suppression of myofibroblast differentiation via microtopography, and there has not been in vivo validation of this technology to date. To address these issues, a novel lamination method was developed to afford more control over topography dimensions. Specifically, in this study we focus on fiber length and its effect on myofibroblast differentiation. Fibroblasts cultured on films with microfibers exceeding 16 μm in length lost the characteristic morphology associated with myofibroblast differentiation, while shorter microfibers of 6 μm length failed to produce this phenotype. This increase in length corresponded to a 50% decrease in fiber stiffness, which acts as a mechanical cue to influence myofibroblast differentiation. Longer microfiber films suppressed expression of myofibroblast-specific genes (αSMA, Col1α2, and Col3α1) and TGFβ signaling components (TGFβ1, TβR2, and Smad3). About 16 μm long microfiber films subcutaneously implanted in a mouse wound-healing model generated a substantially thinner fibrotic capsule and less deposition of collagen in the wound bed. Together, these results identify a critical feature length threshold for microscale topography-mediated repression of fibrotic encapsulation. This study also demonstrates a simple and powerful strategy to improve surface biocompatibility and reduce fibrotic encapsulation around implanted materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5802271PMC
http://dx.doi.org/10.1089/ten.TEA.2015.0087DOI Listing

Publication Analysis

Top Keywords

fibrotic encapsulation
20
myofibroblast differentiation
20
tgfβ signaling
8
μm length
8
microfiber films
8
fibrotic
6
encapsulation
5
myofibroblast
5
differentiation
5
length
5

Similar Publications

Inhalable siRNA Targeting IL-11 Nanoparticles Significantly Inhibit Bleomycin-Induced Pulmonary Fibrosis.

ACS Nano

January 2025

Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.

For idiopathic pulmonary fibrosis (IPF), interleukin 11 (IL-11) is a pivotal cytokine that stimulates the transformation of fibroblasts into myofibroblasts, thus accelerating the progression of pulmonary fibrosis. Here, we develop an innovative inhalable small interfering RNA (siRNA) delivery system termed PEI-GBZA, which demonstrates impressive efficiency in loading siIL-11 targeting IL-11 (siIL-11) and substantially suppresses the differentiation of fibroblasts into myofibroblasts and epithelial-mesenchymal transition (EMT), reduces neutrophil and macrophage recruitment, and ultimately relieves the established fibrotic lesions in the IPF model. PEI-GBZA is prepared by modifying low-molecular-weight polyethylenimine (PEI) with 4-guanidinobenzoic acid (GBZA).

View Article and Find Full Text PDF

: Idiopathic pulmonary fibrosis (IPF) is a prevalent interstitial lung disease that typically progresses gradually, leading to respiratory failure and ultimately death. IPF can be treated with the tyrosine kinase inhibitor, nintedanib (NTD), owing to its anti-fibrotic properties, which ameliorate the impairment of lung function. This study aimed to formulate, optimize, and assess NTD-loaded ufasomes (NTD-UFSs) as a nanosystem for its pulmonary targeting to snowball the bioavailability and therapeutic efficacy of the drug.

View Article and Find Full Text PDF

Fibrotic cardiomyopathy represents a significant pathological condition characterized by the interaction between cardiomyocytes and fibroblasts in the heart, and it currently lacks an effective cure. In vitro platforms, such as engineered heart tissue (EHT) developed through the co-culturing of cardiomyocytes and fibroblasts, are under investigation to elucidate and manipulate these cellular interactions. We present the first integration of mathematical electrophysiological models that encapsulate fibroblast-cardiomyocyte interactions with experimental EHT studies to identify and modulate the ion channels governing these dynamics.

View Article and Find Full Text PDF

Long-term exposure of the peritoneum to peritoneal dialysate results in pathophysiological changes in the anatomical organization of the peritoneum and progressive development of peritoneal fibrosis. This leads to a decline in peritoneal function and ultrafiltration failure, ultimately necessitating the discontinuation of peritoneal dialysis, severely limiting the potential for long-term maintenance. Additionally, encapsulating peritoneal sclerosis, a serious consequence of peritoneal fibrosis, resulting in patients discontinuing PD and significant mortality.

View Article and Find Full Text PDF

Immune reactions to medical implants often lead to encapsulation by fibrotic tissue and impaired device function. This process is thought to initiate by protein adsorption, which enables immune cells to attach and mount an inflammatory response. Previously, several antifibrotic materials have been either designed to reduce protein adsorption or discovered via high-throughput screens (HTS) to favorably regulate inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!