Histone deacetylase 6 (HDAC6) controls several major cellular responses to stress that play a role in neurodegenerative diseases, including aggresome formation, autophagy, and apoptosis. However, the specific role of HDAC6 in prion diseases is not known. In this study, we examined the relationship between HDAC6 and cellular response to the neurotoxic synthetic prion protein fragment PrP106-126. We determined that exposure of cerebral cortical neurons to this fragment alters the expression and localization of HDAC6. Suppression of HDAC6 activity or knockdown of HDAC6 expression exacerbates the neuronal cell death induced by PrP106-126, but that overexpression of HDAC6 alleviates PrP106-126-induced neuronal death. We also found that this protective effect of HDAC6 involves the activation of autophagy and modulation of PI3K-Akt-mammalian target of rapamycin (mTOR) signaling. Overexpression of HDAC6 in neurons-induced autophagy correlated with a reduction in phosphorylated mTOR and phosphorylated p70S6K in response to PrP106-126 stimulation, conversely, HDAC6 deficiency interfered with autophagy and increased phosphorylated mTOR and phosphorylated 70S6K. In addition, HDAC6 also appears to modulate the phosphorylation of Akt; overexpression of HDAC6 increased the phosphorylated Akt, but HDAC6 deficiency resulted in further reduction of phosphorylated Akt. Overall, we demonstrate that HDAC6 protects neurons from toxicity of prion peptide, and that this protection occurs at through the regulation of the PI3k-Akt-mTOR axis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neurobiolaging.2015.09.021 | DOI Listing |
Sex Med
December 2024
Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL 32306, United States.
Background: Erectile dysfunction is a condition with a rapidly increasing prevalence globally with a strong correlation to the increase in obesity and cardiovascular disease rates.
Aim: The aim of the current study is to investigate the potential role of tubacin, a histone deacetylase 6 (HDAC6) inhibitor, in restoring erectile function in a hypercholesterolemia-induced endothelial dysfunction model.
Methods: Thirty-nine male C57Bl/6 J mice were divided into 3 groups.
Curr Cancer Drug Targets
January 2025
Human Genetics Laboratory, Institute of Natural Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, 37130-001, MG, Brazil.
Histone Deacetylase 6 (HDAC6) is an intriguing therapeutic target in cancer re-search, distinguished as the only HDAC family member predominantly located in the cyto-plasm. HDAC6 features two catalytic domains and a unique ubiquitin-binding domain, which sets it apart from other HDACs. Beyond its role in histone deacetylation, HDAC6 targets vari-ous nonhistone substrates, such as α-tubulin, cortactin, Heat Shock Protein 90 (HSP90), and Heat Shock Factor 1 (HSF1).
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China.
Osteoarthritis (OA) is a degenerative joint disease that affects the cartilage and surrounding tissues. The transcription factor Kruppel-like family factor 9 (KLF9) has been identified as a regulator of tumorigenesis. However, its role in OA is still not fully understood.
View Article and Find Full Text PDFIn Silico Pharmacol
January 2025
School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613401 Tamil Nadu India.
Histone deacetylase (HDAC)-6 has overwhelming implications in multiple cancers and neurodegenerative disorders. Unusual HDAC6 expression modulates various signalling mechanisms which in turn forms the aetiology of the above-mentioned disorders. Thus, restoring the typical activity of HDAC6 through small molecules may prove as a promising approach to beat these disorders.
View Article and Find Full Text PDFAppl Radiat Isot
December 2024
Department of Isotope Application Research, National Atomic Research Institute, Taoyuan City, Taiwan, ROC.
Histone deacetylase 6 (HDAC6) is an enzyme crucial in epigenetic regulation and protein degradation, with implications in various cancers and neurodegenerative disorders. While HDAC6 is recognized as a promising therapeutic target for Parkinson's and Alzheimer's diseases, its involvement in spinocerebellar ataxias (SCAs) remains underexplored. Currently, there are no direct methods available for characterizing HDAC6 in the brains of living subjects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!