Active cancellation - A means to zero dead-time pulse EPR.

J Magn Reson

Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106.

Published: December 2015

The necessary resonator employed in pulse electron paramagnetic resonance (EPR) rings after the excitation pulse and creates a finite detector dead-time that ultimately prevents the detection of signal from fast relaxing spin systems, hindering the application of pulse EPR to room temperature measurements of interesting chemical or biological systems. We employ a recently available high bandwidth arbitrary waveform generator (AWG) to produce a cancellation pulse that precisely destructively interferes with the resonant cavity ring-down. We find that we can faithfully detect EPR signal at all times immediately after, as well as during, the excitation pulse. This is a proof of concept study showcasing the capability of AWG pulses to precisely cancel out the resonator ring-down, and allow for the detection of EPR signal during the pulse itself, as well as the dead-time of the resonator. However, the applicability of this approach to conventional EPR experiments is not immediate, as it hinges on either (1) the availability of low-noise microwave sources and amplifiers to produce the necessary power for pulse EPR experiment or (2) the availability of very high conversion factor micro coil resonators that allow for pulse EPR experiments at modest microwave power.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4688155PMC
http://dx.doi.org/10.1016/j.jmr.2015.07.005DOI Listing

Publication Analysis

Top Keywords

pulse epr
16
pulse
9
epr
8
excitation pulse
8
epr signal
8
epr experiments
8
active cancellation
4
cancellation dead-time
4
dead-time pulse
4
epr resonator
4

Similar Publications

Probing the Design Rules for Optimizing Electron Spin Relaxation in Densely Packed Triplet Media for Quantum Applications.

ACS Mater Lett

January 2025

Department of Materials and London Centre for Nanotechnology, Imperial College London, South Kensington Campus, Exhibition Road, SW7 2AZ London, United Kingdom.

Quantum technologies using electron spins have the advantage of employing chemical qubit media with tunable properties. The principal objective of material engineers is to enhance photoexcited spin yields and quantum spin relaxation. In this study, we demonstrate a facile synthetic approach to control spin properties in charge-transfer cocrystals consisting of 1,2,4,5-tetracyanobenzene (TCNB) and acetylated anthracene.

View Article and Find Full Text PDF

A Spectrochemical Series for Electron Spin Relaxation.

J Am Chem Soc

January 2025

Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.

Controlling the rate of electron spin relaxation in paramagnetic molecules is essential for contemporary applications in molecular magnetism and quantum information science. However, the physical mechanisms of spin relaxation remain incompletely understood, and new spectroscopic observables play an important role in evaluating spin dynamics mechanisms and structure-property relationships. Here, we use cryogenic magnetic circular dichroism (MCD) spectroscopy and pulse electron paramagnetic resonance (EPR) in tandem to examine the impact of ligand field (d-d) excited states on spin relaxation rates.

View Article and Find Full Text PDF

Plasma membranes are known to segregate into liquid disordered and ordered nanoscale phases, the latter being called lipid rafts. The structure, lipid composition, and function of lipid rafts have been the subject of numerous studies using a variety of experimental and computational methods. Double electron-electron resonance (DEER, also known as PELDOR) is a member of the pulsed dipole EPR spectroscopy (PDS) family of techniques, allowing the study of nanoscale distances between spin-labeled molecules.

View Article and Find Full Text PDF
Article Synopsis
  • MitoNEET, an iron-sulphur protein in the mitochondrial outer membrane, is linked to the drug pioglitazone but its exact molecular function remains unclear.
  • Researchers identified a specific site for nitric oxide (NO) access to the mitoNEET's [2Fe-2S] cluster and found that both oxygen and pioglitazone can block this access.
  • This discovery suggests a role for mitoNEET in mitochondrial signal transduction related to hypoxia, revealing new insights into how [Fe-S] clusters may function in signaling processes in eukaryotic cells.
View Article and Find Full Text PDF

Electronic Cigarette Vape Decreases Nitric Oxide Bioavailability in Vascular Smooth Muscle Cells via Increased Cytoglobin-Mediated Metabolism.

Free Radic Biol Med

December 2024

Department of Internal Medicine, Division of Cardiovascular Medicine, and the EPR Center, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA. Electronic address:

Cytoglobin (Cygb) regulates vascular tone by modulating nitric oxide (NO) metabolism in vascular smooth muscle cells (VSMCs). In the presence of its cytochrome B5a (B5)/B5 reductase-isoform-3 (B5R) reducing system, Cygb controls NO metabolism via oxygen-dependent NO dioxygenation. Electronic cigarette (EC) use has been shown to induce vascular dysfunction and decrease NO bioavailability; however, the role of Cygb-mediated NO metabolism in the pathophysiology of this process has not been previously investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!