Pyrrocidine A is a known antimicrobial compound produced by endophytic fungi and has a unique 13-membered macrocyclic alkaloid structure with an α,β-unsaturated carbonyl group. We have previously reported that pyrrocidine A shows potent cytotoxicity against human acute promyelocytic leukemia HL60 cells, and the activity is 70-fold higher than that of pyrrocidine B which is the analog lacking the α,β-unsaturated carbonyl group. Pyrrocidine A induced nuclear condensation, DNA fragmentation and caspase activation in HL60 cells. Since the DNA fragmentation was suppressed by pretreatment with the pan-caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone (z-VAD-fmk), caspase-mediated apoptosis contributes to pyrrocidine A-induced cytotoxicity. JFCR39 human cancer cells panel indicated that the mechanism of action of pyrrocidine A is different from other clinical anticancer drugs, and this compound broadly inhibited the growth of various cancer cell lines. The apoptosis induction by pyrrocidine A was suppressed by both N-acetyl-l-cysteine (NAC) and glutathione, both of which are thiol-containing antioxidants. Furthermore, pyrrocidine A directly bound to N-acetyl-l-cysteine methyl ester (NACM) through the Michael-type addition at the α,β-unsaturated carbonyl group and was detected by HPLC and liquid chromatography-ESI-tandem MS (LC-ESI-MS/MS) analyses. This indicates that this moiety is crucial for the potent apoptosis-inducing activity of pyrrocidine A.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ja.2015.103DOI Listing

Publication Analysis

Top Keywords

hl60 cells
12
αβ-unsaturated carbonyl
12
carbonyl group
12
pyrrocidine
10
endophytic fungi
8
potent apoptosis-inducing
8
apoptosis-inducing activity
8
caspase activation
8
dna fragmentation
8
pyrrocidine metabolite
4

Similar Publications

Development of an anti-LAIR1 antibody-drug conjugate for acute myeloid leukemia therapy.

Int J Biol Macromol

January 2025

Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China.

Acute myeloid leukemia (AML) is a severe blood cancer with an urgent need for novel therapies for refractory or relapsed patients. Leukocyte-associated immunoglobulin-like receptor 1 (LAIR1), an immune suppressive receptor expressed on immune cells and AML blasts but minimally on hematopoietic stem cells (HSCs), represents a potential therapeutic target. But there has been limited research on therapies targeting LAIR1 for AML and no published reports on LAIR1 antibody-drug conjugate (ADC).

View Article and Find Full Text PDF

Objective: To investigate the effects of Curcumol on the malignant biological characteristics of acute myeloid leukemia (AML) cells and its molecular mechanism, and to provide theoretical and experimental evidence for the anti-leukemia treatment of traditional Chinese medicine.

Methods: After the AML cell lines HL-60 and KG-1 cells were treated different concentrations of with Curcumol. The proliferation activity of cells was detected by CCK-8 method, and the expression changes of apoptotic proteins and PI3K/AKT signaling pathway proteins were detected by Western blot.

View Article and Find Full Text PDF

A novel therapeutic strategy for leukopenia: Miltefosine activates the Ras/MEK/ERK pathway to promote neutrophil differentiation.

Biochem Biophys Res Commun

December 2024

Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China. Electronic address:

Leukopenia, marked by diminished white blood cell (WBC) counts, presents significant challenges in the management of hematological malignancies and immunocompromised patients. This study evaluated the therapeutic potential of miltefosine (MFS), a phospholipid analogue, for treating leukopenia. In vitro studies using HL60 and NB4 cells revealed that MFS effectively promoted neutrophil differentiation and function, evidenced by the upregulation of surface markers CD11b, CD11c, CD14, and CD15, as well as enhanced bactericidal activity assessed through the NBT reduction assay.

View Article and Find Full Text PDF

Differentiation therapy with all-trans retinoic acid (ATRA) is well established for acute promyelocytic leukemia (APL). However, the narrow application and tolerance development of ATRA remain to be improved. A number of kinase inhibitors have been reported to induce cell differentiation.

View Article and Find Full Text PDF

ReV as a Novel S. cerevisiae-Derived Drug Carrier to Enhance Anticancer Therapy through Daunorubicin Delivery.

Appl Biochem Biotechnol

December 2024

Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-Daero, Deokjin-Gu Jeonju, Jeonbuk, 54896, South Korea.

This study explores the potential of vacuoles derived from Saccharomyces cerevisiae (S. cerevisiae) as a novel form of drug carrier, specifically focusing on their application in enhancing the delivery of the chemotherapeutic agent Daunorubicin (DNR). We isolated and reassembled these vacuoles, referred to as Reassembled Vacuoles (ReV), aiming to overcome the challenges of drug degradation caused by hydrolytic enzymes within traditional vacuoles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!