Introduction: At present, two phylogenetically distinct influenza B virus lineages, B/Yamagata and B/ Victoria, co-circulate worldwide and can cause significant morbidity and mortality.
Objective: The aim of this study was to determine the prevalences of two influenza B virus lineages in the population of Vojvodina and to identify their antigenic and phylogenetic properties.
Methods: A total of 369 and 334 nasopharyngeal, or nasal/throat swab samples, collected during the 2012/2013 and 2013/2014 seasons, respectively, were tested using specific singleplex influenza A, influenza B, influenza B/Yamagata and influenza B/Victoria real-time reverse transcription polymerase chain reaction (RT-PCR) assays. Antigenic and genetic testing were done by hemagglutination inhibition assay and hemagglutinin and neuraminidase gene sequence analysis, respectively.
Results: During the 2012/2013 season, influenza B viruses were present in 53.4% (101/189) of influenza positive samples.The B/Yamagata-like viruses (81.2%) significantly predominated over the B/Victoria-like viruses (18.8%). Comparing to B/Victoria-like positive patients, among B/Yamagata-like positive patients, children 5-14 years of age were significantly more represented (5.3% vs. 35.4%, respectively), as well as patients with mild form of illness (15.8% vs. 45.1%, respectively). The results of sequence analysis and antigenic testing showed that tested viruses were not closely related to B/Wisconsin/1/2010, the vaccine virus for 2012/2013. During the 2013/2014 season influenza B viruses were not detected.
Conclusion: The results of this study confirmed the health significance of influenza B viruses and indicated that B/Yamagata-like viruses were significantly more prevalent than B/Victoria lineage viruses, during the 2012/2013 season. They also showed a sub-optimal match between the tested viruses and the vaccine virus for season 2012/2013.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2298/sarh1508429r | DOI Listing |
J Med Virol
January 2025
Department of Laboratory Medicine, Ziekenhuis aan de Stroom, Antwerp, Belgium.
Three hospitals implemented molecular point-of-care tests (POCTs) to screen patients for SARS-CoV-2 infection upon admission during the 2021/2022 influenza season, which in Belgium lasted from January to April 2022. The samples were simultaneously tested for influenza A/B. Influenza positivity at admission was examined in relation to patient characteristics and symptomatology.
View Article and Find Full Text PDFJ Med Virol
January 2025
Radiology department, Tianjin Fifth Central Hospital, Tianjin, China.
To evaluate the performance of three rapid influenza diagnostic tests (RIDTs) for detecting influenza A and B viruses compared to RT-PCR. A total of 291 subjects with acute respiratory infections were enrolled. Respiratory specimens were collected and tested for influenza A and B viruses using three RIDTs.
View Article and Find Full Text PDFMed Chem
January 2025
Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences of Agadir, Ibn Zohr University, Agadir, Morocco.
Background: We continue to struggle with the prevention and treatment of the influenza virus. The 2009 swine flu pandemic, caused by the H1N1 strain of influenza A, resulted in numerous fatalities. The threat of influenza remains a significant concern for global health, and the development of novel drugs targeting these viruses is highly desirable.
View Article and Find Full Text PDFObjectives: We assessed the transmission of SARS-CoV-2 and vaccine receipt in a representative sample of wet market workers in a highly dense, low-income setting. Wet markets are key in many Asian settings, including Dhaka, Bangladesh, for fresh food, including animal protein.
Methods: During early 2022, we assessed the prevalence of anti-SARS-CoV-2 antibodies in a random sample of poultry and vegetable workers in 15 wet markets, and investigated associations with socio-demographic characteristics and COVID-19 vaccination.
Anal Chem
January 2025
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
Multiplex digital nucleic acid analysis (NAA) allows the precise quantification of multiple target nucleic acids with single-molecule sensitivity, making it highly appealing for life science research and clinical diagnostics. Nucleic acid-guided endonucleases, such as CRISPR, have demonstrated great potential in digital NAA. However, performing multiplex digital NAA with an endonuclease remains challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!