Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: To compare the temperatures of the ocular surface, eyelid, and periorbital skin in normal eyes with Sjögren's syndrome (SS) eyes, evaporative dry eyes (EDE), and aqueous deficient dry eyes (ADDE).
Methods: 10 eyes were analyzed in each age-matched group (normal, SS, EDE, and ADDE). A noninvasive infrared thermal camera captured two-dimensional images in three regions of interest (ROI) in each of three areas: the ocular surface, the upper eyelid, and the periorbital skin within a controlled environmental chamber. Mean temperatures in each ROI were calculated from the videos. Ocular surface time-segmented cooling rates were calculated over a 5-s blink interval.
Results: Relative to normal eyes, dry eyes had lower initial central OSTs (SS -0.71°C, EDE -0.55°C, ADDE -0.95°C, KW P<.0001) and lower central upper lid temperatures (SS -0.24°C, ADDE -0.51°C, and EDE -0.54°C, KW P<.0001). ADDE eyes had the lowest initial central OST (P<.0001), while EDE eyes had the lowest central lid temperature and lower periorbital temperatures (P<.0001). Over the 5-s interblink interval, the greatest rate of temperature loss occurred following eyelid opening, but varied by group (normals -0.52, SS -0.73, EDE -0.63, and ADDE -0.75°C/s). The ADDE group also had the most substantial heat loss over the 5-s interblink interval (-0.97°C).
Conclusions: Differences in OST may be related to thermal differences in lids and periorbita along with an altered tear film. Thermography of the ocular surface, lids, and surrounding tissues may help to differentiate between different etiologies of dry eye.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtos.2015.09.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!