Plants have evolved elaborate mechanisms to regulate pathogen defense. Imbalances in this regulation may result in autoimmune responses that are affecting plant growth and development. In Arabidopsis, SAUL1 encodes a plant U-box ubiquitin ligase and regulates senescence and cell death. Here, we show that saul1-1 plants exhibit characteristics of an autoimmune mutant. A decrease in relative humidity or temperature resulted in reduced growth and systemic lesioning of saul1-1 rosettes. These physiological changes are associated with increased expression of salicylic acid-dependent and pathogenesis-related (PR) genes. Consistently, resistance of saul1-1 plants against Pseudomonas syringae pv. maculicola ES4326, P. syringae pv. tomato DC3000, or Hyaloperonospora arabidopsidis Noco2 was enhanced. Transmission electron microscopy revealed alterations in saul1-1 chloroplast ultrastructure and cell-wall depositions. Confocal analysis on aniline blue-stained leaf sections and cellular universal micro spectrophotometry further showed that these cell-wall depositions contain callose and lignin. To analyze signaling downstream of SAUL1, we performed epistasis analyses between saul1-1 and mutants in the EDS1/PAD4/SAG101 hub. All phenotypes observed in saul1-1 plants at low temperature were dependent on EDS1 and PAD4 but not SAG101. Taken together, SAUL1 negatively regulates immunity upstream of EDS1/PAD4, likely through the degradation of an unknown activator of the pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/MPMI-07-15-0146-R | DOI Listing |
J Exp Bot
September 2021
Molecular Plant Physiology, Institute of Plant Science and Microbiology, Universität Hamburg, Hamburg, Germany.
Plants possess a well-balanced immune system that is required for defense against pathogen infections. In autoimmune mutants or necrotic crosses, an intrinsic temperature-dependent imbalance leads to constitutive immune activation, resulting in severe damage or even death of plants. Recently, cell wall depositions were described as one of the symptoms following induction of the autoimmune phenotype in Arabidopsis saul1-1 mutants.
View Article and Find Full Text PDFNat Commun
October 2020
Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
Both higher plants and mammals rely on nucleotide-binding leucine-rich repeat (NLR) immune receptors to detect pathogens and initiate immunity. Upon effector recognition, plant NLRs oligomerize for defense activation, the mechanism of which is poorly understood. We previously showed that disruption of the E3 ligase, Senescence-Associated E3 Ubiquitin Ligase 1 (SAUL1) leads to the activation of the NLR SOC3.
View Article and Find Full Text PDFMol Plant Microbe Interact
January 2016
1 Molekulare Pflanzenphysiologie, Biozentrum Klein Flottbek, Universität Hamburg, Hamburg, Germany;
Plants have evolved elaborate mechanisms to regulate pathogen defense. Imbalances in this regulation may result in autoimmune responses that are affecting plant growth and development. In Arabidopsis, SAUL1 encodes a plant U-box ubiquitin ligase and regulates senescence and cell death.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!