Aim: To evaluate the activity of hydroxyapatite (HAP) nanoparticles against the proliferation of hepatoma cells.
Methods: HAP nanoparticles were prepared by homogeneous precipitation. The size distribution and morphology of these nanoparticles were determined by laser particle analysis and transmission electron microscopy, respectively. Xenograft tumor models of human hepatoma cells (Bel-7402) implanted in nude mice under the right scruff skin were established and divided into two groups: treatment and control. Once the xenograft tumor grew to a diameter of 0.8 cm, 0.2 ml HAP nanoparticle suspension was injected into the tumor every day for 2 weeks. The long and short diameters of the tumors were measured before and after HAP injection, and the inhibition rate of tumor growth was calculated. Paraffin tissue sections were prepared from xenograft tumors treated as above for 2 weeks, histologically stained for DNA and agyrophilic nucleolar organizer region (AgNORs), and immuno-histologically stained for proliferating cell nuclear antigens (PCNAs). The stained sections were examined by microscopy. Images of these sections were recorded and analyzed by image analysis system and relevant software for DNA content, AgNOR intensity, and PCNA expression in the nucleus, nucleoli, and hepatoma cells, respectively.
Results: The HAP nanoparticles were uniformly distributed, with a size of 44.6 nm to 86.8 nm. Upon the local injection of the tumor with the HAP nanoparticles, the average volumes of the tumors were significantly reduced compared with those of the control group, which had a tumor inhibition rate of 51.32%. The DNA content, AgNOR intensity, and PCNA expression in the hepatoma cells were all significantly reduced (P < 0.01) compared with those in the control group.
Conclusion: HAP nanoparticles inhibit the proliferation of hepatoma cells in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2015.9263 | DOI Listing |
Anal Chem
January 2025
State Key Laboratory of Integrated Optoelectronics, College of Electronics Science and Engineering, Jilin University, No. 2699 Qianjin Street, Changchun, Jilin 130012, P. R. China.
Hepatitis D virus (HDV) significantly influences the progression of liver diseases. Through clinical observations and database analyses, it has been established that patients coinfected with HDV and hepatitis B virus (HBV) experience accelerated progression toward cirrhosis, hepatocellular carcinoma (HCC), and liver failure compared to those infected solely with HBV. A higher viral load correlates with increased replicative activity, enhanced infectivity, and more severe disease manifestations.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China.
Specific tumor-targeted gene delivery remains an unsolved therapeutic issue due to aberrant vascularization in tumor microenvironment (TME). Some bacteria exhibit spontaneous chemotaxis toward the anaerobic and immune-suppressive TME, which makes them ideal natural vehicles for cancer gene therapy. Here, we conjugated ZIF-8 metal-organic frameworks encapsulating eukaryotic murine interleukin 2 () expression plasmid onto the surface of VNP20009, an attenuated strain with well-documented anti-cancer activity, and constructed a TME-targeted delivery system named /ZIF-8@.
View Article and Find Full Text PDFMicrosc Res Tech
January 2025
International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China.
Liver cancer is prevalent with the third highest mortality rate globally. The biomechanical properties of cancer cells play a crucial role in their proliferation and differentiation. Studying the morphological and mechanical properties of individual living cells can be helpful for early diagnosis of cancers.
View Article and Find Full Text PDFJ Liver Cancer
January 2025
Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
Background/aims: Hepatocellular carcinoma (HCC) is a malignant cancer with an increasing incidence worldwide. Although numerous efforts have been made to identify effective therapies for HCC, current strategies have limitations. We present a new approach for targeting L-arginine and argininosuccinate synthetase 1 (ASS1).
View Article and Find Full Text PDFBiomark Res
January 2025
Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University180 Fenglin Road, Shanghai, 200032, China.
Background: Predicting the efficacy of immune-based therapy in patients with unresectable hepatocellular carcinoma (HCC) remains a clinical challenge. This study aims to evaluate the prognostic value of the systemic immune-inflammation index (SII) in forecasting treatment response and survival outcomes for HCC patients undergoing immune-based therapy.
Methods: We analyzed a cohort of 268 HCC patients treated with immune-based therapy from January 2019 to March 2023.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!