3D-ensembles of gold nanowires electrodes (3D-NEEs) are produced by electroless gold deposition in track-etched polycarbonate (PC) membranes, followed by partial etching (plama or chemical) of the polymeric membrane. These electrodes are applied to the anodic stripping voltammetric determination of inorganic As. The controlled etching of the PC template increased the gold surface area, widening the linear range of the analytical response with respect to ensembles of gold nanodisk electrodes (2D-NEEs). 3D-NEEs prepared using a chemical etching time of 10 s allows the anodic stripping determination of As(III) with a detection limit of 0.08 μg/L and a linear range extended up to 20 μg/L. The speciation of inorganic As (As(III) and (As(V)) in river water is possible by difference between As(III) and total inorganic As, determined after reduction of As(V) with cysteine. The proposed method is successfully validated by comparison with lCP-MS determination.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2015.10213DOI Listing

Publication Analysis

Top Keywords

anodic stripping
12
gold nanowires
8
stripping voltammetric
8
voltammetric determination
8
determination inorganic
8
linear range
8
ensembles-of gold
4
nanowires anodic
4
determination
4
inorganic
4

Similar Publications

Cadmium is one of the most dangerous pollutants found in the environment, where it exists mainly due to human activities. High cadmium concentrations can cause serious problems, which is why the detection and determination of Cd is one of the most important tasks. Electroanalytical methods provide rapid and accurate results in the detection of cadmium in various solutions.

View Article and Find Full Text PDF

Dual-Anion-Rich Polymer Electrolytes for High-Voltage Solid-State Lithium Metal Batteries.

ACS Nano

January 2025

Department of Physics, JC STEM Lab of Energy and Materials Physics, City University of Hong Kong, Hong Kong 999077, P. R. China.

Solid polymer electrolytes (SPEs) are promising candidates for lithium metal batteries (LMBs) owing to their safety features and compatibility with lithium metal anodes. However, the inferior ionic conductivity and electrochemical stability of SPEs hinder their application in high-voltage solid-state LMBs (HVSSLMBs). Here, a strategy is proposed to develop a dual-anion-rich solvation structure by implementing ferroelectric barium titanate (BTO) nanoparticles (NPs) and dual lithium salts into poly(vinylidene fluoride) (PVDF)-based SPEs for HVSSLMBs.

View Article and Find Full Text PDF

Realizing an Energy-Dense Potassium Metal Battery at -40 °C via an Integrated Anode-Free and Dual-Ion Strategy.

J Am Chem Soc

January 2025

School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China.

Potassium (K)-based batteries hold great promise for cryogenic applications owing to the small Stokes radius and weak Lewis acidity of K. Nevertheless, energy-dense (>200 W h kg) K batteries under subzero conditions have seldom been reported. Here, an over 400 W h kg K battery is realized at -40 °C via an anode-free and dual-ion strategy, surpassing these state-of-the-art K batteries and even most Li/Na batteries at low temperatures (LTs).

View Article and Find Full Text PDF

This work describes fully integrated multifolding electrochemical paper-based devices (ePADs) for enhanced multiplexed voltammetric determination of heavy metals (Zn(II), Cd(II), and Pb(II)) using tunable passive preconcentration. The paper devices integrate five circular sample preconcentration layers and a 3-electrode electrochemical cell. The hydrophobic barriers of the devices are drawn by pen-plotting with hydrophobic ink, while the electrodes are deposited by screen-printing.

View Article and Find Full Text PDF

The widespread application of anode-free lithium metal batteries (AFLMBs) is hindered by the severe dendrite growth and side reactions due to the poor reversibility of Li plating/stripping. Herein, our study introduces an ultrathin interphase layer of covalent cage 3 (CC3) for highly reversible AFLMBs. The subnano triangular windows in CC3 serve as a Li sieve to accelerate Li desolvation and transport kinetics, inhibit electrolyte decomposition, and form LiF- and LiN-rich solid-electrolyte interphases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!