Lymph node (LN) is an important immune organ that controls adaptive immune responses against foreign pathogens and abnormal cells. To facilitate efficient immune function, LN has highly organized 3D cellular structures, vascular and lymphatic system. Unfortunately, conventional histological analysis relying on thin-sliced tissue has limitations in 3D cellular analysis due to structural disruption and tissue loss in the processes of fixation and tissue slicing. Optical sectioning confocal microscopy has been utilized to analyze 3D structure of intact LN tissue without physical tissue slicing. However, light scattering within biological tissues limits the imaging depth only to superficial portion of LN cortex. Recently, optical clearing techniques have shown enhancement of imaging depth in various biological tissues, but their efficacy for LN are remained to be investigated. In this work, we established optical clearing procedure for LN and achieved 3D volumetric visualization of the whole cortex of LN. More than 4 times improvement in imaging depth was confirmed by using LN obtained from H2B-GFP/actin-DsRed double reporter transgenic mouse. With adoptive transfer of GFP expressing B cells and DsRed expressing T cells and fluorescent vascular labeling by anti-CD31 and anti-LYVE-1 antibody conjugates, we successfully visualized major cellular-level structures such as T-cell zone, B-cell follicle and germinal center. Further, we visualized the GFP expressing metastatic melanoma cell colony, vasculature and lymphatic vessels in the LN cortex.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4605071PMC
http://dx.doi.org/10.1364/BOE.6.004154DOI Listing

Publication Analysis

Top Keywords

optical clearing
12
imaging depth
12
lymph node
8
tissue slicing
8
biological tissues
8
gfp expressing
8
expressing cells
8
tissue
5
optical
4
clearing based
4

Similar Publications

SIRT6 promotes angiogenesis by enhancing VEGFA secretion via demyristoylation in endothelial cell.

J Mol Cell Cardiol

January 2025

Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China; State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China. Electronic address:

Angiogenesis plays a pivotal role in ischemic cardiovascular disease, accompanied by epigenetic regulation during this process. Sirtuin 6 (SIRT6) has been implicated in the regulation of DNA repair, transcription and aging, with its deacetylase activity fully studied. However, the role of SIRT6 demyristoylase activity remains less clear, with even less attention given to its myristoylated substrates.

View Article and Find Full Text PDF

High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the eventwise average transverse momentum [P([p_{T}])]. Disentangling the contributions from fluctuations in the nuclear overlap size (geometrical component) and other sources at a fixed size (intrinsic component) remains a challenge. This problem is addressed by measuring the mean, variance, and skewness of P([p_{T}]) in ^{208}Pb+^{208}Pb and ^{129}Xe+^{129}Xe collisions at sqrt[s_{NN}]=5.

View Article and Find Full Text PDF

Autosomal recessive hypophosphatemic rickets type 2 (ARHR2) is an uncommon hereditary form of rickets characterised by chronic renal phosphate loss and impaired bone mineralisation. This results from compound heterozygous or homozygous pathogenic variants in ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), a key producer of extracellular inorganic pyrophosphate (PPi) and an inhibitor of fibroblast growth factor23 (FGF23). ENPP1 deficiency impacts FGF23 and increases its activity.

View Article and Find Full Text PDF

Key Chlorophyll Molecules in the Uphill Energy Transfer from Chlorophyll to P700 in Far-Red Light-Adapted Photosystem I.

J Phys Chem B

January 2025

Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.

Multiple far-red light-adapted photosystem I (FR-PSI) reaction centers are recently found to work in oxygenic photosynthesis. They contain a small amount of a new type pigment chlorophyll (Chl ) in addition to the major pigment chlorophyll (Chl ). FR-PSI differs from the conventional PSIs in plants and cyanobacteria, which use only visible light absorbed by Chl , although the mechanism of FR-PSI is not fully clear yet.

View Article and Find Full Text PDF

Chemical insight into pros and cons of coffees from different regions.

Sci Rep

January 2025

Faculty of Chemistry, Department of Analytical Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12 Str., 80-233, Gdańsk, Poland.

The main aim of this work was to study the chemical composition of eighteen ground coffees from different countries and continents with regard to the content of hazardous substances as radioactive elements (K, Ra, Ra, U, U and Cs), metals, including heavy metals, aluminum and some microelements (V, Cr, Mn, Fe, Co, Ni, Cu, Zn) as well as substances that have a positive effect on human health and well-being (polyphenols, proteins, fats and caffeine). The tests were carried out before and after the brewing process using the following techniques: gamma and beta spectrometry, a microwave-induced plasma optical emission spectrometer (MIP-OES), gravimetric method, UV-Vis spectrophotometry as well as thin-layer chromatography. The leaching percentage of certain elements/compounds in coffee infusions was also measured.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!