Correlating optical coherence elastography based strain measurements with collagen content of the human ovarian tissue.

Biomed Opt Express

University of Connecticut, Department of Biomedical Engineering, Storrs, CT 06269, USA ; University of Connecticut, Department of Electrical and Computer Engineering, Storrs, CT 06269, USA.

Published: October 2015

In this manuscript, the initial feasibility of a catheter based phase stabilized swept source optical coherence tomography (OCT) system was studied for characterization of the strain inside different human ovarian tissue groups. The ovarian tissue samples were periodically compressed with 500 Hz square wave signal along the axial direction between the surface of an unfocused transducer and a glass cover slide. The displacement and corresponding strain were calculated during loading from different locations for each tissue sample. A total of 27 ex vivo ovaries from 16 patients were investigated. Statistically significant difference (p < 0.001) was observed between the average displacement and strain of the normal and malignant tissue groups. A sensitivity of 93.2% and a specificity of 83% were achieved using 25 microstrain (με) as the threshold. The collagen content of the tissues was quantified from the Sirius Red stained histological sections. The average collagen area fraction (CAF) obtained from the tissue groups were found to have a strong negative correlation (R = -0.75, p < 0.0001) with the amount of strain inside the tissue. This indicates much softer and degenerated tissue structure for the malignant ovaries as compared to the dense, collagen rich structure of the normal ovarian tissue. The initial results indicate that the swept source OCT system can be useful for estimating the elasticity of the human ovarian tissue.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4605040PMC
http://dx.doi.org/10.1364/BOE.6.003806DOI Listing

Publication Analysis

Top Keywords

ovarian tissue
20
human ovarian
12
tissue groups
12
tissue
10
optical coherence
8
collagen content
8
swept source
8
oct system
8
strain inside
8
strain
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!