The progression of epithelial precancers into cancer is accompanied by changes of tissue and cellular structures in the epithelium. Correlations between the structural changes and scattering coefficients of esophageal epithelia were investigated using quantitative phase images and the scattering-phase theorem. An ex vivo study of 14 patients demonstrated that the average scattering coefficient of precancerous epithelia was 37.8% higher than that of normal epithelia from the same patient. The scattering coefficients were highly correlated with morphological features including the cell density and the nuclear-to-cytoplasmic ratio. A high interpatient variability in scattering coefficients was observed and suggests identifying precancerous lesions based on the relative change in scattering coefficients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4605039PMC
http://dx.doi.org/10.1364/BOE.6.003795DOI Listing

Publication Analysis

Top Keywords

scattering coefficients
20
esophageal epithelia
8
scattering
6
coefficients
5
precancerous esophageal
4
epithelia
4
epithelia associated
4
associated increased
4
increased scattering
4
coefficients progression
4

Similar Publications

Steels are currently the most commonly used industrial construction materials. The use of steels depends on their properties, including their fatigue strength. Despite the fact that many works have been devoted to fatigue strength studies, there is still a lack of research discussing the fatigue strength of low-carbon steels.

View Article and Find Full Text PDF

In this paper, we report on the measurement of the optical properties (absorption and scattering coefficients) of photoluminescent turbid media using a homemade integrating sphere setup equipped with a tunable monochromatic light source. The hemispherical reflectance and transmission data are analyzed with the radiative transfer equation using a Monte Carlo simulation-based lookup table to obtain the optical properties of the sample. The results are compared with the optical properties received from a classical integrating sphere setup equipped with a broadband white light source.

View Article and Find Full Text PDF

Rapid and accurate detection of protein content is essential for ensuring the quality of maize. Near-infrared spectroscopy (NIR) technology faces limitations due to surface effects and sample homogeneity issues when measuring the protein content of whole maize grains. Focusing on maize grain powder can significantly improve the quality of data and the accuracy of model predictions.

View Article and Find Full Text PDF

The direct detection of singlet-state oxygen (O) constitutes the holy grail dosimetric method for type-II photodynamic therapy (PDT), a goal that can be quantified using multispectral singlet oxygen near-infrared luminescence dosimetry (MSOLD). The optical properties of tissues, specifically their scattering and absorption coefficients, play a crucial role in determining how the treatment and luminescence light are attenuated. Variations in these properties can significantly impact the spatial distribution of the treatment light and hence the generation of singlet oxygen and the detection of singlet oxygen luminescence signals.

View Article and Find Full Text PDF

UV-vis spectroscopy is a workhorse in analytical chemistry that finds application in life science, organic synthesis, and energy technologies like photocatalysis. In its traditional implementation with cuvettes, it requires sample volumes in the milliliter range. Here, we show how nanofluidic scattering spectroscopy (NSS), which measures visible light scattered from a single nanochannel in a spectrally resolved way, can reduce this sample volume to the attoliter range for solute concentrations in the mM regime, which corresponds to as few as 10 probed molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!